INTERIM ADVANCE EDITION
Doc 10039
AN/511
MANUAL ON SYSTEM WIDE
INFORMATION MANAGEMENT (SWIM)
CONCEPT
Disclaimer
This
document
is an
unedited version
of an
ICAO publication and has
not yet
been
approved
in final form. As content may still be
supplemented, removed,
or
otherwise modified during the editing
process,
the accuracy or reliability of this
version of the document cannot be
guaranteed. It
is made available
for
information purposes only and should neither be relied upon for complete
accuracy nor considered authoritative until officially approved
and
published in
its final form. ICAO does not warrant that the information contained in this
unedited document is complete and correct and shall not be liable
whatsoever
for any
damages incurred
as a
result
of its use.
Advanced edition (unedited)
International Civil Aviation Organization
(ii) Manual on System Wide Information Management (SWIM) Concept
Published in separate English, French, Russian
Spanish, Arabic and Chinese editions by the
INTERNATIONAL CIVIL AVIATION ORGANIZATION
999 Robert Bourassa Boulevard, Montréal, Quebec, Canada H3C 5H7
For ordering information and for a complete listing of sales agents
and booksellers, please go to the ICAO website at www.icao.int
Doc 10039, Manual on System Wide Information Management (SWIM) Concept
Order Number: xxxx
ISBN xxx-xx-xxxx-xxx-x
© ICAO 2015
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, without prior
permission in writing from the International Civil Aviation Organization.
(iii)
AMENDMENTS
Amendments are announced in the supplements to the Publications
Catalogue; the Catalogue and its supplements are available on the ICAO
website at www.icao.int. The space below is provided to keep a record of
such amendments.
RECORD OF AMENDMENTS AND CORRIGENDA
AMENDMENTS CORRIGENDA
No. Date Entered by No. Date Entered by
(v)
TABLE OF CONTENTS
Page
Foreword .......................................................................................................................... (vii)
Abbreviations and Acronyms.................................................................................................... (ix)
Glossary of Terms
.................................................................................................................... (xiii)
Publications
.......................................................................................................................... (xvii)
Chapter 1. Introduction to the Manual ............................................................................. 1-1
1.
1 Background ......................................................................................................... 1-1
1.2 Scope of the manual ............................................................................................ 1-2
1.3 Purpose/Objective of the manual ........................................................................... 1-2
1.4 Target audience ................................................................................................... 1-3
1.5 Organization of the manual ................................................................................... 1-3
1.6 Relationship to other documents ........................................................................... 1-4
Chapter 2. The SWIM Concept .......................................................................................... 2-1
2.1 The need for SWIM ........................................................................................................ 2-1
2.2 SWIM benefits ................................................................................................................ 2-1
2.3 SWIM definition .............................................................................................................. 2-2
2.4 SWIM use of service-oriented architecture (SOA) ......................................................... 2-3
2.5 ATM service delivery management (SDM) ................................................................... 2-4
2.6 Life-cycle management .................................................................................................. 2-5
2.7 SWIM Concept explained ............................................................................................... 2-7
2.7.1 SWIM principles
....................................................................................... 2-7
2.7.2 SWIM stakeholders .................................................................................. 2-8
2.8 Performance improvement via SWIM ..................................................................... 2-8
(vi) Manual on System Wide Information Management (SWIM) Concept
Page
Chapter 3. The SWIM Global Interoperability Framework .............................................. 3-1
3.1 SWIM layers ........................................................................................................ 3-1
3.2 Interoperability at different layers ........................................................................... 3-2
3.2.1 A flight data exchange example ................................................................. 3-3
3.2.2 SWIM enterprises and regions .................................................................. 3-5
3.3 Overview of functions and standards by layer ......................................................... 3-7
3.4 Information exchange services .............................................................................. 3-8
3.5 SWIM registry ...................................................................................................... 3-8
3.6 Information exchange models ............................................................................... 3-10
3.7 SWIM infrastructure ............................................................................................. 3-12
3.7.1 SWIM functional architecture example ....................................................... 3-14
3.7.2 SWIM Technical architecture .................................................................... 3-18
3.8 SWIM governance ............................................................................................... 3-20
3.8.1 Governance of information definition .......................................................... 3-21
3.8.2 Governance of information services ........................................................... 3-21
Chapter 4. Transition and Mixed Environment ............................................................... 4-1
4.1 Participants ......................................................................................................... 4-1
4.2 Roles and responsibilities ..................................................................................... 4-2
4.3 Key interactions ................................................................................................... 4-2
Chapter 5. Future Developments ...................................................................................... 5-1
5.1 GANP ASBU Modules on SWIM ............................................................................ 5-1
5.1.1 Technology requirements ......................................................................... 5-3
5.1.2 Deployment considerations ....................................................................... 5-3
5.2 SWIM air-ground .................................................................................................. 5-4
5.3 Interconnecting SWIM services across ASP/Regional boundaries ............................ 5-5
Appendices
A — SWIM and information domain management
B — Short description of potential candidate SWIM standards
C — Meeting the ATM system requirements
––––––––––––––––––––––
(vii)
FOREWORD
Today’s air traffic management (ATM) system comprises a wide variety of applications developed over time
for specific purposes. It is characterized by many custom communication protocols, each with their own self-
contained information systems: on board the aircraft, in the air traffic service unit, etc. Each of these
interfaces is custom designed, developed, managed, and maintained individually and locally at a significant
cost. Moreover, the ways in which ATM information is defined, structured, provided and used are specific to
most of the ATM systems.
With the expected growth in aviation demand, economic pressures and attention to environmental impact,
the ATM system will be increasingly reliant on accurate and timely information. Such information must be
organized and provided by solutions that support system-wide interoperability and secured seamless
information access and exchange.
Global improvements in information management are needed in order to integrate the ATM network for a
performance-enhancing operational scenario. These improvements are envisioned to be applied on a
System Wide Information Management (SWIM) basis. The development of SWIM infrastructure and services
should proceed in alignment with a globally-accepted operational concept that articulates the expected
SWIM implementation in terms of the benefits, enablers, features, and principles for development and
transition.
A global SWIM concept, presented in this manual, describes how stakeholders will participate in SWIM, how
it will be managed based on the agreed SWIM governance, and how it will be operated at the various levels
starting with the business and institutional down to the technical and implementation levels. As such it
provides the foundation for further developments.
Comments concerning the manual should be addressed to:
The Secretary General
International Civil Aviation Organization
999 Robert Bourassa Boulevard
Montréal, Québec H3C 5H7
Canada
(ix)
ABBREVIATIONS AND ACRONYMS
AAtS Aircraft Access to SWIM
AFTN Aeronautical Fixed Telecommunication Network
AI Aeronautical Information
AIDC ATS Inter-facility Data Communications
AIRM ATM Information Reference Model
AIS Aeronautical Information Services
AIXM Aeronautical Information Exchange Model
AMHS Aeronautical Message Handling System
ANS Air Navigation Services
ANSP Air Navigation Service Provider
AOC Airline Operations Center
API Application Program Interface
ASBU Aviation System Block Upgrades
ASP ATM Service Provider
ASTERIX All Purpose Structured Eurocontrol Surveillance Information Exchange
ATC Air Traffic Control
ATM Air Traffic Management
ATMRPP Air Traffic Management Requirements and Performance Panel
ATN Aeronautical Telecommunications Network
ATS Air Traffic Services
AU Airspace User
BP Boundary Protection
BPEL Business Process Execution Language
B2B Business to Business
CARATS Collaborative Action for Renovation of Air Traffic Systems
CDM Collaborative Decision Making
CIDIN Common ICAO Data Interchange Network
CNAS China New Generation ATM System
COI Community of Interest
COTS Commercial off-the-Shelf
DATM Digital ATM Information Management
(x) Manual on System Wide Information Management (SWIM) Concept
DDS Data Distribution Service
DNS Domain Name System (or Service)
eAIP Electronic Aeronautical Information Publication
EBP External Boundary Protection
EMB Enterprise Messaging Bus
ESB Enterprise Service Bus
ESM Enterprise Service Management
EUROCAE European Organization for Civil Aviation Equipment
FAA Federal Aviation Administration
FIXM Flight Information Exchange Model
FO Flight Object
FOC Flight Operations Center
GANP Global Air Navigation Plan
GATMOC Global ATM Operational Concept
GML Geography Markup Language
GUFI Globally Unique Flight Identifier
HTML Hypertext markup language
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
I&A Identification and Authentication
IAIDQ International Association of Information and Data Quality
ICAO International Civil Aviation Organization
IETF Internet Engineering Task Force
IM Information Management
IP Internet Protocol
IPS Internet Protocol Suite
ISRM Information Service Reference Model
IT Information Technology
iWXXM ICAO WXXM (model)
Java EE Java Platform, Enterprise Edition
Java SE Java Platform, Standard Edition
JMS Java Messaging Service
JMX Java Management eXtension
KPA Key Performance Areas
MAC Message Authentication Code
Abbreviations and Acronyms (xi)
MEP Message Exchange Pattern
MET Meteorology
MOM Message-Oriented Middleware
MQ Message Queue
MTOM Message Transmission Optimization Mechanism
NAS National Airspace System (U.S.A)
NextGen Next Generation Air Transportation System
NOTAM Notice to Airmen
OASIS Organization for the Advancement of Structured Information Standards
OGC Open Geospatial Consortium
OLDI On-line Data Interchange
OMG Object Management Group
OWL Web Ontology Language
PEP Policy Enforcement Point
PKI Public Key Infrastructure
QoS Quality of Service
REST REpresentational State Transfer
ROI Return on Investment
SAML Security Authorization Markup Language
SAS SWIM Application Services
SASL Simple Authentication and Security Layer
SDM Service Delivery Management
SESAR Single European Sky ATM Research
SLA Service Level Agreement
SNMP Simple Network Management Protocol
SOA Service-Oriented Architecture
SSL Secure Sockets Layer
SWIM System Wide Information Management
TBD To be determined
TCP Transmission Control Protocol
TFM Traffic Flow Management
TLS Transport Layer Security
TMI Traffic Management Initiative
UDDI Universal Description, Discovery, and Integration
URL Uniform Resource Locator
(xii) Manual on System Wide Information Management (SWIM) Concept
VoIP Voice Over Internet Protocol
VPN Virtual Private Network
W3C World Wide Web Consortium
WAN Wide Area Network
WCS Web Coverage Service
WFS Web Feature Service
WMS Web Map Service
WS Web Services
WSDL Web Services Description Language
WSDM Web Services Distributed Management
WSF Web Services Framework
WS-RM WS-Reliable Messaging
WS-RT WS-Resource Transfer
WXXM Weather Information Exchange Model
XML eXtensible Markup Language
XPath XML Path Language
XQuery XML Query Language
XSD XML Schema Definition
XSLT eXtensible Stylesheet Language Transformations
––––––––––––––––––––––
(xiii)
GLOSSARY OF TERMS
When the subsequent terms are used in this manual, they have the following meanings:
Accessible. An information service that may be consumed by means of either the request/response or
publish-subscribe operational pattern is accessible.
Application. See SWIM-enabled application.
Authorization. Permission to engage in a specific activity. A SWIM-enabled application is authorized if it
has permission to engage in a specific activity, such as subscribing to a publication service.
Build-time. The lifecycle stage in which an information provider or consumer is under development, e.g.,
pre-operational. Also called design-time.
Community of interest (COI). A collaborative group of users who must exchange information in pursuit of
shared goals, interests, missions or business processes. COIs are established in a variety of ways and
may be composed of members from one or more functions and organizations as needed for a shared
mission.
Consumer. See Information consumer.
Core Services. Functional capabilities of the SWIM Infrastructure such as interface management, request-
reply and publish-subscribe messaging, service security, and enterprise service management.
Design-time. The lifecycle stage in which an information provider or consumer is under development, e.g.,
pre-operational. Also called build-time.
Discoverable. An information service that may be discovered by a potential user is discoverable.
Discovery. See Service Discovery.
Information Dissemination. The act of distributing information to one or more recipients.
Domain. A set of business activities that: (a) have a common mission or purpose; (b) share common
operational and functional requirements and capabilities; and (c) needs to be considered separately
from other activities, while maintaining the relevant relationships with them.
Enterprise. See SWIM Enterprise.
Enterprise Service Management (ESM). The SWIM core service addressing the management of SWIM-
enabled services, including performance and availability. ESM provides the ability to monitor, manage,
and scale services within the enterprise to ensure the capability offerings are available, responsive and
scalable to the operational environment supported.
Expose. To make a service interface discoverable. In SWIM, information services are exposed via one or
more SWIM Service Registries.
(xiv) Manual on System Wide Information Management (SWIM) Concept
Extensibility. A characteristic of an interface (or service) that continues to support previously conformant
users after it has been modified (i.e. extended) for new users.
Filtering rules. Filtering rules define constraints on an information provider with respect to the data to be
provided to a consumer.
Governance. SWIM governance is characterized by the people, policies, and processes required for
leading, communicating, guiding, and enforcing the stakeholder organizational behaviours needed for
global interoperability.
Information Consumer. The person, application or system consuming an information service. Also called
consumer.
Information Domain. Focused on identifying, defining, and satisfying the information needs of the set of
business activities associated with a specific domain.
Information Exchange Model. An Information Exchange Model is designed to enable the management and
distribution of information services data in digital format. Normally this is defined for a specific domain
such as aeronautical information.
Information Model. An information model is a representation of concepts and the relationships, constraints,
rules, and operations to specify data semantics for a chosen domain.
Information Producer. The person, application or system producing an information service. Also called
producer.
Information Provider. Information service provider. Also called provider.
Information Service. An information service provides information consumers access to one or more
applications or systems by means of the SWIM core services. It encapsulates a distinct set of
operations logic within a well-defined functional boundary.
Infrastructure. The logical and physical (i.e., hardware and software) elements that together provide
(SWIM) functionality.
Interface Management. The SWIM core service providing a standard interoperable means for description,
access, invocation and manipulation of resources to enable compatible communications between ATM
information providers and consumers.
Message. A structured information exchange package consisting of a header and payload.
Messaging. The SWIM core service that provides delivery of data and notifications between applications
and systems.
Middleware. Middleware is software that serves to "glue together" or mediate between two separate and
often already existing messaging standards. Typically considered as being at the messaging layer and
the transport layer.
Notification. An indication presented to a user regarding the status of a system or an element in a system.
In a publish-subscribe system, a publication may consist of notifications about data rather than the data
itself.
Glossary of terms (xv)
Operational Pattern. An operational pattern describes the essential flow of a SWIM-enabled service. It is
based on the term pattern, which describes the essential features of a common solution to a common
problem in software development.
Publication. An information service based on the publish-subscribe operational pattern.
Publisher. An information service provider utilizing the publish-subscribe operational pattern.
Publish-subscribe. A one-to-many operational pattern in which an information provider called a publisher
makes its services available (i.e. publishes) on a subscription basis. An information consumer in this
paradigm called a subscriber requests access to the publication service via a subscription request.
Based on the nature of their subscriptions, subscribers will continue to receive updates from the
publisher until they request the termination of their subscription.
Reliable Delivery. A characteristic of information transfer in which the transfer is either successful or the
sender of the information is notified of the failure of the transfer.
Request/Response. The operational pattern distinguished by a two-way interaction between a requesting
entity and a responding entity. This pattern is also called Request/reply.
REST. A REpresentational State Transfer (REST) architecture is a simpler way to implement web services
using HTTP and other application protocols (rather than SOAP and WSDL).
Runtime. The lifecycle stage in which an information provider or consumer is operational.
Security. The SWIM core service responsible for the protection of information, operation, assets and
participants from unauthorized access or attack.
Selection Criteria. Selection criteria provide the means by which a consumer identifies the data of interest
to an information provider.
Service. See Information Service.
Service Deregistration. The act of deleting an entry from the SWIM Service Registry.
Service Discovery. The act of locating and accessing the schema for a specific information service. Also
referred to as discovery.
Service-oriented. Pertaining to a service-oriented architecture.
Service-Oriented Architecture (SOA). An approach to integrate applications running on heterogeneous
platforms using industry-wide acceptable standards. Each application is exposed as one or more
services where each information service provides a particular functionality. Information services
(applications) communicate with each other in a coordinated sequence that is defined by a business
process.
Service Provider. An organization or entity providing a service. Refers (in this document) to ASPs or
vendors that provide network or other value-added services; distinct from an information provider.
Service Registration. The act of creating an entry in the SWIM Service Registry.
Service Registry. SWIM service registry.
(xvi) Manual on System Wide Information Management (SWIM) Concept
SOAP. XML based web service protocol.
State. An ICAO Member State.
Subscriber. A consumer of a publication service.
Subscription. The process of becoming a subscriber to a publication service. Subscription consists of
subscription administration and subscription activation.
Subscription Activation. The act of initiating dissemination of publication data and notifications to a
subscriber. Subscription can occur during either design-time or runtime.
Subscription Administration. The act of administering a subscription, including authorization, access list
and other database updates, etc.
System-Wide Information Management (SWIM). SWIM consists of standards, infrastructure and
governance enabling the management of ATM related information and its exchange between qualified
parties via interoperable services.
SWIM Access Point. A SWIM access point is a logical entity which bundles a number of technical
capabilities (e.g. messaging, security, logging, interface management, etc.).
SWIM core services. The fundamental SWIM mechanisms that enable information sharing: Interface
Management, Messaging, Enterprise Service Management (ESM) and Security. These services are
solution-agnostic (not limited to a single process or solution environment) and have a high degree of
autonomy so that they support reuse. Also referred to as “core services”.
SWIM core services infrastructure. Hardware and software elements that provide the SWIM core
services. Also referred to as “core services infrastructure”.
SWIM-enabled application. A SWIM enabled application consumes or provides SWIM information services
using SWIM standards. Also referred to as “application”.
SWIM-enabled service. An information service that may be accessed via SWIM.
SWIM Enterprise. A SWIM enterprise can be an ATM service provider (ASP), a group of ASPs, or an
Airspace User, or an ATM support industry that has full control of the implementation planning and
execution within the enterprise.
SWIM Region. A collection of SWIM enterprises that have agreed upon common regional governance and
internal standards. A region will be delineated by the area of influence of a given governance structure
that defines the standards, policies, etc. that are applicable to all the participants within the region.
SWIM Registry. A static registry or directory containing entries with the information necessary to discover
and access services. The Registry utilizes a formal registration process to store, catalog and manage
metadata relevant to the services, thereby enabling the search, identification and understanding of
resources. Also referred to as “Service Registry” or “Registry”.
SWIM User. Depending on context, a person, organization or application authorized to provide and/or
consume services via SWIM.
–––––––––––––––––––––––
(xvii)
PUBLICATIONS
(used in this manual)
[1] "Procedures for Air Navigation Services - Air Traffic Management, Doc. 4444, 15th edition," ICAO,
Montreal, Canada, 2007.
[2] "Annex 15 :Aeronautical Information Services (AIS)," ICAO, Montreal, Canada, 2009.
[3] "Global Air Traffic Management (ATM) Operational Concept, ICAO Doc. 9854," ICAO, Montreal,
Canada, First edition 2005.
[4] "Manual on Air Traffic Management System Requirements, ICAO Doc. 9882," ICAO, Montreal, Canada,
First edition 2007.
[5] "Global Air Navigation Plan, ICAO Doc. 9750," ICAO, Montreal, Canada, 4th edition 2013.
[6] "Manual on Flight and Flow - Information for a Collaborative Environment, ICAO Doc. 9965," ICAO,
Montreal, Canada, 2012.
[7] "Manual on Collaborative Air Traffic Flow Management, ICAO Doc. 9971," ICAO, Montreal, Canada,
2012.
[8] "Aviation System Block Upgrades - Working Document," ICAO, Montreal, Canada, Mar 2013.
[9] "AIXM - Aeronautical Information Exchange Model," FAA/Eurocontrol, March 2013. [Online]. Available:
www.aixm.aero.
[10] "FIXM - Flight Information Exchange Model," 2012. [Online]. Available: http://www.fixm.aero/.
[11] "WXXM - Weather Information Exchange Model," FAA/Eurocontrol, 2011. [Online]. Available:
http://www.wxxm.aero.
[12] "IWXXM - ICAO Meteorological Information Exchange Model," World Meteorological
Organization/ICAO, 2013. [Online]. Available: http://www.wmo.int/pages/prog/www/WIS/wiswiki/tiki-
index.php?page=AvXML-1. [Accessed 27 02 2014].
[13] "AIDX - Aviation Information Data Exchange," 2012. [Online]. Available: http://www.aidx.aero.
[14] "World Wide Web Consortium (W3C)," W3C, 1 Apr 2013. [Online]. Available: www.w3c.org.
[15] "Unified Modeling Language (UML)," Object Management Group, [Online]. Available: www.uml.org.
[Accessed Aug 2013].
[16] "SESAR SWIM Concept of Operations, edition 00.02.03," SESAR Joint Undertaking, 8 Jun 2012.
[Online]. Available: http://www.eurocontrol.int/sites/default/files/content/documents/information-
management/del08.01.01-d40-swim_conops.pdf. [Accessed Sep 2013].
[17] "OASIS SOA Reference Model TC," OASIS, [Online]. Available: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=soa-rm. [Accessed Sep 2013].
[18] "Air Traffic Management (ATM SDM) Description, Circular 335 - Advanced edition," ICAO, Montreal,
Canada, 2013.
[19] The Open Group, "SOA Governance Framework," Aug 2009. [Online]. Available:
pubs.opengroup.org/onlinepubs/9699909699/toc.pdf. [Accessed Sep 2013].
[20] "SWIM Service Life Management Processes, v1.0," Federal Aviation Administration, Washington, DC,
June 2010.
[21] "Manual on Performance of the
A
ir Navigation System, ICAO Doc. 9883," ICAO, Montreal, Canada, Feb
2008.
[22] "Airport Collaborative Decision Making," European Aiport CDM, Sep 2013. [Online]. Available:
http://www.euro-cdm.org/concept_introduction.php.
[23] E. Eyuboglu and J. Pouzet, "ATM Communications - AMHS," in 12th Air Navigation Conference,
Montreal, Canada, Nov 2012.
(xviii) Manual on System Wide Information Management (SWIM) Concept
[24] "Manual on detailed Technical Specifications for the ATN using ISO/OSI protocols - ATS Message
Handling Service (ICAO Doc 9880 Part IIB)," ICAO, Montreal, Canada, 2012.
[25] "Aircraft Access to SWIM (AAtS) Initial Concept of Operations (ConOps) - Draft Report," Federal
Aviation Administration, Washington, DC, May 2013.
[26] E. Lasschyut, M. van Hakken, W. Treurniet and M. Visser, "How to make an effective Information
Exchange Model or the Good and Bad aspects of the NATO JC3IEDM," in NATO RTO IST-042
Symposium on "Coalition C4ISR Architectures and Information Exchange Capabilities", The Hague, The
Netherlands, 2004.
[27] M. Eppler, Managing Information Quality: Increasign the value of information in Knowledge-intensive
products and processes (2nd ed.), Heidelberg, Germany: Springer, 2006.
[28] T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global Data Space, U.S.A: Morgan and
Claypool Publishers, 2011.
[29] J. McGregor, "Validating Domain Models," unknown. [Online]. Available:
http://www.cs.clemson.edu/~johnmc/joop/col19/column19.html. [Accessed 1 Nov 2013].
[30] "OGC Web Feature Service," Open Geospatial Consortium, May 2005. [Online]. Available:
http://www.opengeospatial.org/standards/wfs.
[31] "OGC Web Map Service," Open Gepspatial Consortium, 2005. [Online]. Available:
http://www.opengeospatial.org/standards/wms.
[32] "OMG Data Distribution Service Portal," Object Management Group (OMG), September 2013. [Online].
Available: http://portals.omg.org/dds.
––––––––––––––––––––––
(1-1)
Chapter 1
INTRODUCTION TO THE MANUAL
1.1 Background
1.1.1
The System Wide Information Management (SWIM) will complement human-to-human with
machine-to-machine communication, and improve data distribution and accessibility in terms of quality of the
data exchanged. However, the flexibility whereby human intelligence and oral communication, by their very
nature, can adapt to situational nuances of communication and operations has to be engineered into
Information Technology (IT) systems. Hence, IT systems will increasingly need to “ask for / discover”
operationally-relevant facts, depending on the circumstances, rather than remain “being informed” by pre-
agreed messages.
1.1.2 Implementation of the SWIM Concept, outlined in this document, must address the challenge of
creating an “interoperability environment” which allows the SWIM IT systems to cope with the full complexity
of operational information exchanges. The SWIM Concept introduces a significant change in the business
practices of managing information during the entire life cycle of an ATM process. The implementation of
SWIM seeks to provide quality information to the right people with the right systems at the right time. The
SWIM environment shifts the ATM information architecture paradigm from point-to-point data exchanges to
system-wide interoperability.
1.1.3 According to the Convention on International Civil Aviation (Doc 7300) and its Annexes, the
International Civil Aviation Organization (ICAO) is entrusted, among others, with the role of establishing
communication and information standards. For example, the Procedures for Air Navigation Services — Air
Traffic Management (Doc 4444) standardizes both the phraseology used by pilots and controllers, and the
data exchanged to communicate flight intent and flight reports. Similarly, Annex 15 — Aeronautical
Information Services standardizes aeronautical information services and products. These documents
provide a template for the provision of aeronautical information with detailed requirements for aeronautical
data, implemented using technology that is becoming increasingly outdated.
1.1.4 The Global Air Traffic Management (ATM) Operational Concept (Doc 9854) envisages the
application of SWIM to promote information-based ATM integration, stated as follows:
“The ATM operational concept envisages the application of a system-wide information
management concept, where information management solutions will be defined at the overall
system level, rather than individually at each major subsystem (programme/ project/ process/
function) and interface level, as has happened in the past.”
1.1.5 The application of SWIM in support of the global ATM operational concept was further
reinforced in the Manual on Air Traffic Management System Requirements (Doc 9882).
1.1.6 SWIM is an integral part of the Global Air Navigation Plan (GANP) (Doc 9750), fourth edition,
and is covered in a number of the aviation system block upgrades (ASBU) modules. Additional information
on the way SWIM is currently integrated in the GANP/ASBUs is provided in Section 5.1.
(1-2) Manual on System Wide Information Management (SWIM) Concept
1.1.7 Over the course of the past years, research into SWIM concepts and solutions has taken place,
and is already at various stages of development in a non-harmonized way in different ICAO Member States.
Modernization programmes such as the Collaborative Action for Renovation of Air Traffic Systems
(CARATS) in Japan, the China New Generation ATM System (CNAS), the Next Generation Air
Transportation System (NextGen) in the United States and the Single European Sky ATM Research
(SESAR) in Europe, all consider the implementation of SWIM as a fundamental requirement for future ATM
systems.
1.2 SCOPE OF THE MANUAL
The scope of the manual is limited to articulating the concept for SWIM necessary to achieve global
interoperability. The manual further defines terms and describes a common framework to facilitate
discussions and promote interoperability.
1.3 PURPOSE/OBJECTIVE OF THE MANUAL
1.3.1
The purpose of the manual is to provide a vision for interoperable global information
management and addresses the transition to a mixed operational environment. Its objectives are two-fold: 1)
to assist in the creation of a common lexicon to ease communication when States/groups desire to
coordinate on related topics; and 2) to provide a background framework for assisting States/Regions which
have not yet undertaken the development and implementation of SWIM instantiations.
1.3.2 This manual establishes guidelines for providing information services via a Service-Oriented
Architecture (SOA) approach that enables ATM service providers (ASPs) to deliver global interoperability.
While standards will permit interoperability, the SWIM Concept does not prescribe, or expect, a single global
implementation of SWIM.
1.3.3 This manual further elaborates the information management concept articulated in the Global
ATM Operational Concept (Doc 9854). The manual addresses the following:
a) definition of terms of relevance to information management to enable international discourse
on system-wide information interoperability;
b) a layered description of SWIM enabling the reader to understand representative standards
that are applicable to different information management elements;
c) the layered model further enables an understanding of the separation of the information
management from the information being managed and the consumers
of that information;
d) a description, through operational scenarios including the actors, of the expected
roles and responsibilities of the actors in the scenarios, and the information
exchange through the various SWIM layers; and
e) a description of how SWIM will operate in a transitional environment with some
legacy ASPs.
Chapter 1. Introduction 1-3
1.4 TARGET AUDIENCE
This manual has been developed for members of the ATM community seeking information on integrating
their information management within a global SWIM construct. The manual does not specifically address
any individual member of the ATM community with interested parties to be found in all of the following
communities:
a) ATM service providers;
b) airspace providers;
c) airspace users;
d) aerodrome;
e) meteorological (MET) information providers;
f) ATM support industry;
g) ICAO;
h) regulatory authorities;
i) States; and
j) any direct consumer of information from the ATM system
1
.
1.5 ORGANIZATION OF THE MANUAL
1
.5.1 The manual is organized as follows:
a) Chapter 1 gives the background and the purpose and scope of the document;
b) Chapter 2 provides the need for a SWIM concept, the definition and the benefits of SWIM,
and explains the SWIM concept;
c) Chapter 3 considers the SWIM global interoperability framework and its details. These
consider interoperability and governance at the information exchange services, information
exchange models, and at the SWIM infrastructure level. The functions and representative
standards are provided;
d) Chapter 4 considers the transition to SWIM and operations in a mixed environment;
e) Chapter 5 considers some future developments; and
f) A number of appendices provide supporting material.
1
It is recognized that information from the ATM system that is publicly available may be re-packaged for
broader consumption outside of the scope of this document.
(1-4) Manual on System Wide Information Management (SWIM) Concept
1.6 RELATIONSHIP TO OTHER DOCUMENTS
1.6.1
The Global Air Traffic Management (ATM) Operational Concept (Doc 9854) describes a future
concept in which information is managed system-wide. Based upon this concept, the Manual on Air Traffic
Management System Requirements (Doc 9882) explicitly identifies the implementation of SWIM as a
requirement for the future ATM System.
1.6.2 The Manual on Flight and Flow Information for a Collaborative Environment (FF-ICE)
(Doc 9965) provides a vision specifically for flight information that relies on SWIM as a mechanism for
exchange of flight information while managing the consistency and timeliness of the information. The Manual
on Collaborative Air Traffic Flow Management (Doc 9971) describes the importance of information exchange
in establishing a collaborative environment.
1.6.3 There are two GANP (Doc 9750) ASBU modules that focus on SWIM development: B1-SWIM
and B2-SWIM. The ASBU module B1-SWIM is termed ‘Performance Improvement through the application of
SWIM’ and applies to the “implementation of SWIM services (applications and infrastructure) creating the
aviation intranet based on standard data models, and internet-based protocols to maximize interoperability”.
The ASBU module B2-SWIM is termed ‘Enabling Airborne Participation in collaborative ATM through SWIM’
and applies to the “connection of the aircraft as an information node in SWIM enabling participation in
collaborative ATM processes with access to rich voluminous dynamic data including meteorology”.
1.6.4 Closely related to the management of information, are the standards that define the information
content, format and rules for exchange. Some of these are described on websites articulating information
exchange standards applicable to aeronautical information (AIXM – Aeronautical Information Exchange
Model, 2013), flight information (FIXM – Flight Information Exchange Model, 2012), meteorological
information (WXXM – Weather Information Exchange Model, 2011), (IWXXM – ICAO Meteorological
Information Exchange Model, 2013), and aviation information (AIDX – Aviation Information Data Exchange,
2012).
1.6.5 Other existing standards are expected to be applied at all levels of the SWIM framework which
include the World Wide Web Consortium (W3C) (2013) specifications, Unified Modelling Language (UML),
and the standards for network layer exchange.
1.6.6 It is expected that international information technology standards will eventually be adopted for
SWIM implementations. However, associated technologies and technical standards necessary for
implementation of SWIM are presently evolving at a rapid pace. This manual, therefore, provides
representative examples in Appendix B of the types of standards and technologies necessary for
international harmonization but does not specify the standards at this point.
––––––––––––––––––––––––
2-1
Chapter 2
THE SWIM CONCEPT
2.1 THE NEED FOR SWIM
2.1.1
The present-day model for information exchange acts as a constraint on the forward-looking
implementation of future performance-enhancing operational improvements. Chief limitations are:
a) systems have not been designed and implemented to be globally interoperable within
globally-agreed parameters;
b) many interfaces, which were designed to support point-to-point or application-to-application
exchanges, have limited flexibility to accommodate new users, additional systems, new
content or changed formats;
c) message-size limitations and a non-scalable approach to information exchange with the
present infrastructure;
d) the current infrastructure can make it difficult and costly for one stakeholder to access, on a
timely basis, information originated by another stakeholder;
e) the current variety of systems and exchange models makes it challenging to devise security
frameworks across systems and stakeholders so as to support the increasing need for open
and timely data exchange whilst at the same time respecting the legitimate security
concerns of all stakeholders; and
f) currently, most organizations manage their ATM information in partial isolation leading to
duplication and inconsistencies.
2.1.2 The Global Air Traffic Management Operational Concept (Doc 9854) acknowledges that the
shortcomings of the current provision and management of ATM related information will be addressed, in
part, by improvements in information management (IM). The global improvements in information
management are intended to integrate the ATM network in the information sense, not just in the system
sense, and are envisioned to be applied as a SWIM concept.
2.2 SWIM BENEFITS
2.2.1 SWIM contributes to achieving the following benefits:
a) improved decision making by all stakeholders during all strategic and tactical phases of
flight (pre-flight, in-flight and post-flight) through:
(i) improved shared situational awareness; and
2-2
2.3.1
ATM-relat
e
2.3.2
the infrast
r
application
s
as used in
2.3.4
deployme
n
users ther
e
operationa
l
manual wi
l
concept. A
2
SDM is
(ii)
b) incr
c) mor
for i
d) loos
and
e) sup
p
SWIM con
s
e
d informatio
n
The scope
r
ucture requi
r
s
consume
o
this manual
d
SWIM is
n
t lies in the
e
of (a curved
l
ATM servic
l
l therefore r
e
detailed glo
b
discussed la
t
improved av
a
e
ased system
e
flexible and
n
formation ex
c
e
coupling w
h
c
onsumers;
a
p
ort of ATM S
s
ists of stand
n
and its exch
of SWIM is
r
ed to exch
a
o
r provide S
W
d
esignates a
n
n
ot meant to
needs of its
arrow is us
e
es through
a
e
ference thi
s
b
al interopera
t
er in Section
Manual o
n
a
ilability of q
u
performanc
e
cost-effectiv
e
c
hange;
h
ich minimiz
e
a
nd
ervice Delive
2.3 S
W
ards, infrast
r
ange betwe
e
illustrated in
a
nge informa
t
W
IM informati
o
n
ATM SWIM
-
be a stand
-
client applic
a
e
d to indicat
e
a
pplications t
h
s
application
bility framew
o
Figure 1.
T
2.5
n
System Wi
d
u
ality data an
d
e
;
e
communic
a
e
s the impa
c
ry Managem
e
W
IM DEFINI
T
r
ucture and
g
e
n qualified p
a
Figure 1. It i
t
ion between
o
n services
u
-
enabled app
-
alone conce
a
tions which,
e
this associa
h
at define th
layer in ord
e
o
rk is introdu
c
T
he Scope o
f
d
e Informatio
n
d
information
a
tions by the
a
c
t of change
s
e
nt (SDM)
2
.
T
ION
g
overnance
e
a
rties via inte
r
ncludes info
r
SWIM-ena
b
u
sing SWIM
s
lication, unle
s
pt. The justi
f
although n
o
a
tion). SWIM
e scope an
d
e
r to facilitat
e
c
ed in Chapt
e
f
SWIM
n
Manageme
n
from authori
t
a
pplication o
f
s
between in
f
e
nabling the
roperable se
r
r
mation exch
a
b
led applicati
o
s
tandards. T
h
s
s stated oth
e
f
ication for it
o
t part of S
W
conveys the
d
quality of t
h
e
the prese
n
e
r 3.
n
t (SWIM) C
o
t
ative source
s
f
common st
a
f
ormation pr
o
managemen
t
r
vices.
a
nge standa
r
o
ns. SWIM-
e
h
e term ‘app
l
e
rwise.
t
s developm
e
W
IM, are the
p
requirement
s
h
e informatio
n
tation of the
o
ncept
s
;
a
ndards
o
ducers
t
of the
r
ds and
e
nabled
l
ication’
e
nt and
p
rimary
s
of the
n. This
SWIM
Chapter 2. The SWIM concept 2-3
2.3.5 Interoperability is achieved on a global scale through the use of common information exchange
models for information elements of interest, the use of common services for information exchange, and the
use of appropriate technology and standards.
2.3.6 These models for ATM information have been defined in harmonized conceptual and logical
data models. The models describe the data used in different information domains such as aeronautical,
flight, meteorology, and surveillance domains. They also describe logical format and structure of the data
elements that make up these domains.
2.3.7 Similarly, a definition of information services is necessary to indicate what types of services are
provided, their behaviour, their performance levels and ways they can be accessed.
2.3.8 SWIM operates over an interoperable (runtime) infrastructure (ground/ground and air/ground)
through which the data and information will be distributed. Its implementation may, depending on the specific
needs profile, differ from one stakeholder to another, both in terms of scope and method of implementation.
It will offer technical services based as much as possible on mainstream information technologies (IT). It will
preferably be based on commercial off-the-shelf (COTS) products and services, but it is possible that in
some cases specific software may need to be developed. Typically dedicated and secured IP networks and
the Internet will provide the underlying basic ground/ground connectivity.
2.3.9 Achieving interoperability across all areas illustrated in Figure 1 requires that SWIM adheres to
agreed-upon governance. Governance is further described in Section 3.8.
2.4 SWIM USE OF SERVICE-ORIENTED ARCHITECTURE (SOA)
2.4.1 Service-Oriented Architecture (SOA) is a general concept or paradigm for “organizing and
utilizing distributed capabilities that may be under the control of different owners” (OASIS SOA Reference
Model TC). While there is no formally-agreed definition of SOA, it is generally considered that partitioning of
functionality into unassociated, self-contained and, therefore, reusable services that can be discovered by
potential users is a key feature that discriminates SOA from more traditional architectural paradigms. The
SOA paradigm has been used successfully in many industries including manufacturing, banking, health
care, and merchandise retailing.
2.4.2 A service orientation is assumed for information exchanges between SWIM stakeholders, i.e.
an information provider publishes and exposes its services for the use of information consumers; this is
done via interconnected registries which list the services and the specific details for their use. One of the
benefits of SOA is the promotion of “loose coupling”. Loose coupling means that an information provider has
a reduced impact on the information consumer. Dependencies are minimized allowing components and
services to operate with as little knowledge as possible of other components or services (i.e. a consumer
should need to understand only what is absolutely required to invoke a service and no more).
2.4.3 While service orientation is necessary for global SWIM-enabled services, implementation of
SOA within individual stakeholders has to be balanced with any cost-benefit that it might endow.
2.4.4 SOA is being pursued internally by ASPs that have a large number of ATM systems which need
to cooperate in order to provide ATM functions. ASPs and other stakeholders with few systems may opt to
retain their current architectures as long as the SWIM information services that they wish to
provide/consume are exposed externally in a standardized SWIM manner. (See Section 3.4 on information
exchange services).
2-4 Manual on System Wide Information Management (SWIM) Concept
2.4.5 When empowered by SOA, SWIM will enable stakeholders to capitalize on opportunities, new
services and capabilities by drawing upon industry best practices which have been proven to provide these
benefits:
a) More agile service delivery: SOA enables organizations to respond quickly to new business
imperatives, develop distinctive new capabilities and leverage existing services for true
responsiveness by delivering information based services to the aviation industry;
b) Cost reductions: SOA promotes the reuse of existing assets, increasing efficiency and
reducing application development costs and by sharing the most readily available code
bases and services between ASPs. An integrated SWIM implementation improves
coordination across all components of the modern ATM system reducing costly and time-
consuming data conversion;
c) Return on Investment (ROI): SWIM and SOA do not necessarily only provide a financial
benefit on their own. SWIM and SOA also provide a foundation for the high performance
and future value to be found in the projects that they enable. Thus, even if they don’t have a
positive ROI on their own terms, SWIM/SOA projects must support a positive, combined ROI
with the projects they enable – and may also boost it;
d) Meet IT goals: The technological value of SWIM includes:
1) Simpler systems: SOA is based on industry standards and can reduce complexity
when compared with integrating systems on a solution-by-solution basis. It also
enables future applications to mesh seamlessly with existing standards-based
services;
2) Lowering maintenance costs: Simplicity and ease-of-maintenance signify that support
costs are reduced;
3) Enhancing architectural flexibility: SOA supports the building of next-generation
performance-driven composite solutions that consolidate numerous business
processes from multiple systems; and
4) Lowering integration costs: SOA makes it possible for organizations to develop,
implement and re-use processes that are technically enabled and integrated through
the use of open technology standards. In addition, connectivity, data exchange and
process integration efforts are simplified, reducing integration-related development
and support costs.
2.5 ATM SERVICE DELIVERY MANAGEMENT (SDM)
2.5.1 One of the components of the Global ATM Operational Concept (Doc 9854) is the ATM service
delivery management (ATM SDM). The ATM SDM concept component is described in Circular 335. The
ATM SDM will operate seamlessly from gate to gate for all phases of flight and across all service providers.
It will address the balance and consolidation of the decisions of the various other processes/services, as
well as the time horizon at which, and the conditions under which, these decisions are made. Key
conceptual changes include:
Chapter 2. The SWIM concept 2-5
a) services to be delivered by the ATM SDM component will be established on an as-required
basis subject to ATM system design. Once established, service provision will be done
through on-request or event-driven basis;
b) ATM system design will be determined through a collaborative decision-making (CDM)
process and by taking into account requirements of system-wide safety and performance
cases;
c) services delivered by the ATM SDM component will, through CDM, balance and optimize
user-requested trajectories to achieve the ATM community’s expectations; and
d) management by trajectory will involve the development of an agreement that extends
through all the physical phases of flight.
2.5.2 Carrying out ATM SDM entails analyzing and deciding what assets need to be deployed in order
to deliver the required services and obtain the expected performance, while considering the following:
a) across and within global concept components — airspace organization, aerodrome
operations, user operations, etc.;
b) across and within time horizons — from long-term planning through to tactical decisions; and
c) end-to-end — whether seen as gate-to-gate, or en route-to-en route.
2.5.3 Planning and conducting of SWIM will take place through ATM SDM. The ATM SDM defines the
rules and means for safe and secure information sharing between all the participants. It acts as a focal point
for coordination between the different service providers (i.e. through Letter of Agreement, Service Level
Agreement, information sharing, delegation of service provision).
2.5.4 Doing ATM SDM requires that accredited, quality-assured, timely information be shared by
decision makers on a system-wide basis to ensure the cohesion and linkage between concept components
and to build an integrated picture. Therefore, the needs established through ATM SDM set the overall
requirements for SWIM. Taking these needs into account, the SWIM concept provides consolidated
guidance, addressing topics such as SWIM scope (e.g. models, infrastructure, applications), principles (e.g.
open standards, service-oriented architecture), and governance (e.g. approval and evolution of standards,
allocation of functions/infrastructure to stakeholders, definition of roles and responsibilities).
2.6 LIFE-CYCLE MANAGEMENT
2.6.1
The important role in SWIM of the overall governance of the service approach is described in
Section 3.8. The SWIM registry is an important enabler for managing an information service. The service
lifecycle will need to be managed as a transparent process for the stakeholders.
2.6.2 The SOA Governance Framework (The Open Group, 2009) enables organizations to define and
deploy their own focused and customized SOA governance model. The framework uses the concept of a
solution portfolio (designed to meet business needs) and a service portfolio that results from the solution
portfolio. It then proposes a way to manage both the solutions and the services portfolios and their lifecycles
through the planning and through the design and operational phases.
2-6
2.6.3
example,
o
lifecycle fo
r
2.6.4
updates.
U
by consu
m
to the SL
A
There may
2.6.5
managing
c
use wides
p
service, w
h
Some SWI
M
o
ne SWIM pi
o
r
a producer.
a) iden
t
b) prop
o
c) defi
n
d) dev
e
e) verifi
f) prod
g) depr
e
h) retir
e
Fi
g
S
Changing r
e
pdates whic
h
m
ers (i.e. not
b
A
but not by
a
also be revi
s
While the
c
hanges to a
p
read. Produ
c
h
ile consum
e
M
pioneers
h
o
neer ANSP i
d
t
ification of th
o
sal as a S
W
n
ition of the in
e
lopment of t
h
cation of the
uction and d
e
e
cation of th
e
e
ment of the i
g
ure 1. Exa
m
S
ervice Ope
r
e
quirements,
h
require a c
h
b
ackward-co
m
a
ny known
c
s
ion updates
(
initial infor
m
service is m
o
c
ers will hav
e
e
rs are looki
n
Manual o
n
h
ave develo
p
d
entifies the
f
e business n
e
W
IM informati
o
formation se
r
h
e informatio
n
information
s
e
ployment of
t
e
information
nformation s
e
m
ple of a Ser
v
r
ator, and Se
during the li
h
ange to the
m
patible) are
c
onsumers (i.
e
(
i.e. bug fixe
s
m
ation servic
o
re complica
t
e
to balance
n
g for “stabi
l
n
System Wi
d
p
ed their cu
s
f
ollowing sta
g
e
ed;
o
n service (a
n
r
vice;
n
service;.
s
ervice;
t
he informati
o
service (afte
r
e
rvice.
v
ice Lifecycl
rvice Provid
fe of an info
r
Service Lev
e
considered
t
e
. are back
w
s
) where no c
h
e design a
n
t
ed once the i
the need to
l
ity” of the
e
d
e Informatio
n
s
tomized S
W
g
es and spe
c
n
d approval);
o
n service;
r
decision to
r
e for Servic
e
er (Includin
g
rmation serv
i
e
l Agreement
t
o be major.
w
ard-compati
b
h
anges are n
n
d deploym
e
i
nformation s
e
“improve” th
e
xisting servi
c
n
Manageme
n
W
IM Governa
c
ifies the pro
c
r
etire); and
e
Producer,
g
Brokers)
i
ce, can pro
d
(SLA) and a
Updates whi
c
b
le) are con
s
eeded to the
e
nt is relati
v
e
rvice has b
e
e functionali
t
c
es. This is
n
t (SWIM) C
o
nce Models.
c
esses in the
d
uce major o
lso require c
h
c
h require a
c
s
idered to be
SLA.
v
ely straightf
o
e
en deployed
t
y of the info
r
further com
p
o
ncept
As an
service
r minor
h
anges
c
hange
minor.
o
rward,
and its
r
mation
p
licated
Chapter 2. The SWIM concept 2-7
because some producers may not be aware of all the consumers. The deprecation cycle might have to be
prolonged and different versions of the service might have to be supported at a given time. Each enterprise
will need to coordinate with major stakeholders and within its region, as applicable. Similarly, regions will
need to coordinate with other regions.
2.7 SWIM CONCEPT EXPLAINED
2.7.1 SWIM Principles
2.7.1.1 SWIM should utilize the best practices from different information communities to meet the
needs of global ATM. The aim of SWIM is to provide information to users with access to relevant and
mutually understood information in an interoperable manner. Interoperability is the ability of diverse systems
belonging to different organizations to exchange information. This includes the ability, not only to
communicate and exchange data, but also to interpret the information exchanged in a meaningful manner.
Information should be of the right quality, provided at the right time and delivered to the right place, hence
enabling net-centric ATM operations. In order to achieve this objective efficiently the following SWIM
principles should be adhered to:
a) separation of information provision and information consumption to the extent possible. In
the ATM network, almost every participant is a producer and a consumer of information. It is
not always appropriate to decide in advance who will need what type of information and
from whom it would be obtained and when. The key issue is to decouple producers of
information from the possible consumers in such a way that the number and the nature of
the consumers can evolve through time;
b) loose system coupling. Where each of its components has, or makes use of, as little
knowledge as possible of the definitions of other distinct components. By doing this the
barriers between systems and applications are minimized, and interfaces are compatible;
c) use of open standards. An open standard is one that is publicly available and has various
rights of use associated with it. It may also have various properties describing its design
phase (e.g. open process); and
d) use of interoperable services. After an analysis of the processes and needs of business
domains, the required functionality is developed, packaged and implemented as a suite of
interoperable services that can be used in a flexible way within multiple separate systems.
2.7.1.2 In order to achieve global interoperability, the above SWIM principles should be applied.
Although this does not mandate the internal implementation of loose coupling and open standards (SOA), a
particular stakeholder, within its own system, may choose to do so or not. Some ASPs may implement SOA
internally for some of their systems to promote agile evolution, while other ASPs may choose not to, or plan
evolutions at a later stage. As a consequence the connectivity between SOA and non-SOA needs to be
ensured by means of Gateways. These Gateways may be shared by systems within a member state,
provided as a shared resource for the use of multiple member states, or provided by a new participant such
as a third-party provider. See Section 4 for descriptions of mixed SWIM and non-SWIM environments and
some transition scenarios.
2-8 Manual on System Wide Information Management (SWIM) Concept
2.7.2 SWIM Stakeholders
2.7.2.1 The Global ATM Operational Concept (Doc 9854) lists and describes the various members
comprising the ATM community, as follows:
a) aerodrome community;
b) airspace providers;
c) airspace users;
d) ATM service providers;
e) ATM support industry;
f) International Civil Aviation Organization (ICAO);
g) regulatory authorities; and
h) States.
2.7.2.3 Some of these members (e.g. ICAO, States and regulatory authorities) will be mainly
responsible for SWIM governance.
2.7.2.4 One of the main changes brought about by SWIM is that any of these members can act both as
information provider and as information consumer. Therefore, while the ASPs will continue to be at the core
of the ATM processes, SWIM will allow other information providers to play a bigger role, e.g. an ASP may
consume an information service from an airspace user to get a detailed trajectory profile for a given flight.
2.8 PERFORMANCE IMPROVEMENT VIA SWIM
2
.8.1 Given the international nature of SWIM, it is not likely that one solution, and certainly not one
single technology, will fit all. Individual ASPs are expected to implement suitable procedures in accordance
with target performance levels as described in the Manual on Global Performance of the Air Navigation
System (Doc 9883). Nevertheless, it is recognized that global interoperability and standardization are
essential for efficient and safe international aviation and SWIM will likely be an important driver for new and
updated standards.
2.8.2 The Global ATM Operational Concept (Doc 9854) equates Information Management (IM) with
SWIM, and this document uses the latter term to avoid any confusion. As discussed above, the ASBU
module B1-SWIM entitled “Performance Improvement through the application of SWIM” applies to the
implementation of SWIM services (applications and infrastructure) creating the aviation intranet based on
standard data models, and internet-based protocols to maximize interoperability.
2.8.4 As described in Circular 335 — Air Traffic Management Service Delivery Management (ATM
SDM) Description, the planning and conduct of SWIM will take place through the ATM SDM component of
the Global ATM Operational Concept, which acts as a focal point for coordination; while the needs
established through ATM SDM will set the overall requirements for SWIM.
Chapter 2. The SWIM concept 2-9
2.8.5 In the above context, performance-based SWIM signifies that performance requirements for
information management systems are not established from a technical perspective in isolation, but through a
top-down/bottom-up trade-off process. The process links such requirements clearly and strongly to the
Performance Case of the corresponding Operational Improvement which argues the benefits/disbenefits
across the eleven Key Performance Areas (KPAs) of the Global ATM Operational Concept.
2.8.6 For example, a particular characteristic would be (or may be deemed to be) ‘required’ for a type
of information transaction, not simply because it is technically feasible, or desirable, or because it would
enable a potentially quicker operational response time by an aircraft or group of aircraft. Rather, it would be
‘required’ only after establishing that the potentially quicker operational response time can be realized during
operations, and can also be taken full advantage of, to the extent that it will deliver tangible, justifiable
benefits overall. In other words, information management systems are just one link in the chain, and their
requirements must be in balance: (a) with those for the rest of the chain; and (b) with the overall benefits that
the chain can realize in practice.
2.8.7 Although one size may not fit all the needs of all stakeholders, it is of the utmost importance, for
the consistency of the global air transportation system, to achieve some level of interoperability between the
different solutions developed. The SWIM infrastructure and services should be developed in alignment with
a globally-accepted operational concept that articulates the expected SWIM implementation in terms of
benefits, enablers, features, and principles for development and transition.
2.8.8 The Global ATM Operational Concept (Doc 9854) states that “Key to the philosophy adopted
within the operational concept is the notion of global information utilization, management and interchange.
This philosophy is supported in large part by evolution to a holistic, cooperative and collaborative decision-
making environment ...”. As such, it will require an increase in information exchanges, both in terms of the
number of exchanges performed and the number of participants involved. Security will become a critical
factor, therefore the global SWIM concept encompasses aspects such as authentication, authorization,
encryption, intrusion detection, security policies, etc.
2.8.9 Information required to perform an organization/company 'business' is one of the most important
assets of any organization/company that allows it to deliver valuable services (to aviation, in this case).
––––––––––––––––––––––––––––
3-1
Chapter 3
THE SWIM GLOBAL INTEROPERABILITY FRAMEWORK
3.1 SWIM LAYERS
3.1.1
This section presents a five-layered SWIM Global Interoperability Framework to describe the
sharing of information via SWIM. The framework is based on several complementary descriptions of SWIM
that have been created by stakeholders. The layers explain the functions, the combination of representative
standards and the mechanisms for interoperability. This current description of the SWIM Global
Interoperability Framework focusses on the technical elements of the ground-ground SWIM segment and is
consistent with airborne segment solutions that are being developed.
3.1.2 The Global Interoperability Framework (see Figure 2) comprises the following layers:
a) SWIM-enabled Applications of information providers and information consumers around
the globe. Individuals and organizations, such as air traffic managers and airspace users,
will interact using applications that interoperate through SWIM;
b) Information Exchange Services defined for each ATM information domain and for cross
domain purposes, where opportune, following governance specifications and agreed upon
by SWIM stakeholders. SWIM-enabled applications will use information exchange services
for interaction;
c) Information Exchange Models using subject-specific standards for sharing information for
the above Information Exchange Services. The information exchange models define the
syntax and semantics of the data exchanged by applications;
d) SWIM Infrastructure for sharing information. It provides the core services such as interface
management, request-reply and publish-subscribe messaging, service security, and
enterprise service management; and
e) Network Connectivity provides consolidated telecommunications services, including
hardware. This infrastructure is a collection of the interconnected network infrastructures of
the different stakeholders. These will be private/public Internet Protocol (IP) networks.
3.1.3 The scope of SWIM is limited to the three middle layers (i.e. Information Exchange Services,
Information Exchange Models, and SWIM Infrastructure) and to the governance of these layers.
3.1.4 The currently identified Information exchange services of global interest pertain to aeronautical
information, meteorological information, surveillance information, and flight information. Additional domain
services and cross-domain composite services will likely be defined in the future. The most important task
for SWIM implementing stakeholders is to agree upon a set of services for information exchange and the
range of options that will be appropriate within each of these services (for member States with different
levels of ATM sophistication) and the standards for information exchange.
3-2
3.1.5
standards.
exchange
s
3.1.6
defined st
a
These infr
a
an
A
SP. T
h
it is based
o
The SWIM
how inter
o
paragraph
There can
In other w
o
s
tandard ma
y
The SWIM
a
ndards and
a
a
structures
w
h
e specific ty
p
o
n the SWIM
global inter
o
o
perability b
e
describes ho
w
Figure 2.
be a ma
n
o
rds, an exc
y
be used by
o
infrastructur
e
a
re not expe
c
w
ill also be
g
p
e of SWIM i
Concept obj
e
3.2 I
N
o
perability fra
e
tween SWI
M
w
informatio
n
Manual o
n
SWIM Glob
a
n
y-to-many r
e
hange servi
c
o
ne or more
e
e
and networ
k
c
ted to consti
g
radually im
p
m
plementati
o
e
ctives and i
n
N
TEROPER
A
mework des
c
M
-enabled a
n
from one S
W
n
System Wi
d
a
l Interoper
a
e
lationship
b
c
e may use
e
xchange se
r
k
connectivit
y
tute the maj
o
p
lemented a
n
o
ns will be le
f
n
teroperabilit
y
A
BILITY A
T
c
ribes a laye
r
pplications
w
W
IM-enabled
d
e Informatio
n
a
bility Fram
e
b
etween exc
one or mor
r
vices.
y
layers are li
k
o
r technical b
n
d interconn
e
f
t to that stak
e
y
with other s
T
DIFFERE
N
r
ed framewo
r
w
ill be achi
e
application i
s
n
Manageme
n
e
work
c
hange servi
c
r
e exchange
k
ely to be bui
arrier to the
r
e
cted by sta
e
holder’s org
takeholders i
N
T LAYERS
r
k enabling f
u
e
ved in pra
c
s
exchanged
w
n
t (SWIM) C
o
c
es and ex
c
standards,
a
lt upon a set
r
ealization of
a
keholders, s
anization as
s made poss
u
rther discus
s
c
tice. The f
o
w
ith another.
o
ncept
c
hange
a
nd an
of well-
SWIM.
uch as
long as
ible.
s
ion on
o
llowing
Chapter 3.
3.2.1.1
relevance
t
service pa
r
providers.
I
located an
y
the same t
y
The SWIM
A
s an exa
m
t
o a flight be
r
ticipants su
c
I
n a global S
W
y
where in th
e
y
pe (e.g. an
A
Figure 3. E
x
global intero
p
3.2.1
m
ple, consid
e
ing planned.
c
h as ATM
s
W
IM environ
m
e
world, and
m
A
SP and an
A
x
ample of flig
h
p
erability fra
m
A Flight
D
e
r two SWIM
-
These SWI
M
s
ervice provi
d
m
ent, the tw
o
m
ay be oper
a
A
U). The inte
r
h
t informatio
n
m
ework
D
ata Excha
-
enabled app
M
-enabled a
p
d
ers (ASPs),
o
interacting
S
a
ted by diffe
r
r
action proce
e
n
exchange b
e
nge examp
p
lications tha
t
p
plications m
a
airspace us
e
S
WIM-enabl
e
r
ent organiza
t
e
ds as descri
e
tween SWIM-
le
t
must share
a
y be used
b
e
rs (AUs) or
e
d applicatio
n
tions which
d
bed in Figur
e
enabled appli
flight inform
a
b
y a variety
o
emergency
n
s may be ph
y
d
o not need t
e
3.
cations
3-3
a
tion of
o
f ATM
service
y
sically
o be of
3-4 Manual on System Wide Information Management (SWIM) Concept
3.2.1.2 The purpose of each layer in the SWIM global interoperability framework is described as follows:
a) at the highest layer, a SWIM-enabled application is used to request an information service.
Semantic interoperability based on a common understanding of the information used is
required. A SWIM-enabled application is capable of interacting with the layers below it
through implementation of standards that enable interoperability;
b) at the Information Exchange Services layer, the characteristics of the requested information
service are described in a technology-neutral manner. For example, a flight route provision
service may give a flight’s route upon request with the flight’s GUFI (Globally Unique Flight
Identifier). At this layer, the response characteristics including application-level error
conditions (e.g. GUFI unknown) and normal response (e.g. provide the route) are described;
c) at the information exchange models layer, the characteristics of the data being used by the
information exchange services are described to include information content, structure and
format. Continuing with the previous example, the GUFI and flight route would be described
via flight information exchange model (FIXM) compliant data elements. The combined
information exchange services and the information exchange models layers define individual
application-level messages that can be exchanged to deliver the requested service;
d) the SWIM Infrastructure layer provides core SWIM services such as interface management,
messaging, service security, and enterprise service management. At this layer, application-
level messages required to deliver the requested information service are implemented in
accordance with a defined protocol for interoperability with the service deliverer through
interface management functions that also manage performance requirements. Messaging
core services provide such functions as addressing and message assurance. Security
services such as authentication and authorization are also provided; and
e) the message is then transported over a global network, where it is delivered to a specified
recipient responsible for providing the application-level message to the recipient SWIM-
enabled application.
3.2.1.3 The process described above is somewhat analogous to a set of nesting dolls in which different
layers take the payload from the layer above (see Figure 4). Upon receipt of the lowest layer, the process is
reversed and each layer is unwrapped.
3.2.1.4 In order for the receiving party to successfully unwrap the messages received at each layer,
each of these layers must understand the protocol used when the message was constructed. Outside of the
scope of SWIM, at the network connectivity layer, interoperability is straightforward. At the SWIM Core
services layer, many standards exist (see 0) that allow an information service, aware of the encoding
standard, to recover the information. Information services do not need to operate with the same standards
internally, but may require a translation function for interoperability.
Chapter 3.
3.2.2.1
different st
a
a global S
W
standards
d
exchanges
an
A
U, or
a
the enterp
r
3.2.2.2
Flow – Inf
o
by the are
a
standards,
Region, a
c
establishe
d
standards
standards.
The SWIM
F
It is clear t
h
a
keholders
w
W
IM will be a
c
d
efined at a
g
within SWI
M
a
n ATM sup
p
r
ise.
The conce
p
o
rmation for
a
a
of influenc
e
the policies,
c
ollection of
e
d
for that pa
it deems ap
p
Furthermor
e
global intero
p
F
igure 4. La
y
3.2.
2
h
at “one siz
e
w
ill be driven
c
hieved thro
u
g
lobal level s
h
M
enterprises
.
p
ort industry t
h
p
t of a SWI
M
a
Collaborati
v
e
of a given
etc. that ar
e
e
nterprises,
fo
rticular SWI
M
p
ropriate to
a
e
, a much ri
p
erability fra
m
y
ers encaps
u
2
SWIM E
n
e
fits all” ma
y
by differing
p
u
gh the inter-
o
h
all focus on
.
In this cont
e
h
at has full c
o
M
Region ha
s
v
e Environm
e
governance
s
e
applicable
o
r example
A
M
region. In
a
pply interna
l
cher set of
m
ework
u
late messa
g
n
terprises
a
y
not be the
p
erformance
o
peration of
p
the exchang
e
xt, a SWIM
o
ntrol of the
i
s
previously
b
e
nt (F
F
-ICE),
s
tructure (i.e
.
to all the e
n
A
SPs or AUs
,
turn, each
e
l
ly, provided
services wo
u
g
es from pri
o
a
nd region
s
most desira
expectations
p
otentially a
v
es between
S
enterprise c
a
implementati
o
b
een articula
t
(Doc 9965).
. the govern
a
n
terprises wi
t
,
may choos
e
e
nterprise m
a
they can int
e
u
ld likely be
or layers
s
ble solution
a
and circum
s
v
ariety of imp
l
S
WIM enterp
a
n be an AS
P
o
n planning
a
t
ed in the M
a
A
SWIM reg
a
nce structur
e
t
hin the regi
o
e
to interope
r
a
y organize
e
roperate wi
t
available
w
a
t a global l
e
s
tances. As
a
l
ementations
.
rises and no
t
P
, a group o
f
a
nd executio
n
a
nual on Fli
g
ion will be d
e
e
which defi
n
o
n). Within a
r
ate using st
a
itself with w
h
t
h the SWIM
w
ithin an ent
e
3-5
e
vel as
a
result,
.
SWIM
t
on the
f
ASPs,
n
within
g
ht and
e
limited
n
es the
SWIM
a
ndards
h
atever
region
e
rprise.
3-6
Provider/c
o
are logical
etc. SWIM
3.2.2.3
enterprise
s
in systems
AU-2 belo
n
chooses t
o
application
s
3.2.2.4
regions, th
e
for implem
e
gateways
o
o
nsumer syst
e
entities that
access point
s
Figure 4 pr
o
s
are shown
that connec
t
n
g to SWIM
o
belong to
s
; however,
s
Where circ
e
n interoper
a
e
nting these
g
o
r adapters, f
o
a) one en
t
Region
s
b) each e
n
enterpri
s
c) a new
o
with on
e
d) combin
a
e
ms belongi
n
provide SWI
s
are describ
e
o
vides an e
x
an ASP, a
n
t
to their res
p
Region A
w
a second
S
s
ecurity servi
c
Figure 4. I
umstances
a
a
bility will be
a
g
ateways is
n
o
r example:
t
erprise may
s
to its SWIM
n
terprise coul
d
s
e (illustrate
d
o
rganization
m
e
SWIM Regi
o
a
tion of the a
b
Manual o
n
n
g to an ente
r
M core servi
e
d later in S
e
x
ample of rel
a
n
d two AUs (
A
p
ective SWIM
w
hich shares
S
WIM Regi
o
c
es may limit
l
lustration o
f
a
re such th
a
a
chieved via
g
n
ot prescribe
d
implement t
h
Region;
d
be respons
d
in Figure 5
f
m
ay appear
o
n native sta
n
b
ove.
n
System Wi
d
r
prise will co
n
ces such as
e
ction 3.7, S
W
a
tionships b
e
A
U-1 and AU
access poin
a common
o
n B. Thus
the exposur
e
f
Enterprise
s
a
t full harmo
g
ateways/ad
a
d
. As a resul
t
h
e gateway/
a
ible for impl
e
f
or AU-2);
exposing se
r
n
dards; and
d
e Informatio
n
n
nect to SWI
M
messaging,
W
IM infrastru
c
e
tween enter
p
U
-2). The app
n
ts via servic
e
set of stand
there is po
t
e
of services
t
s
and SWIM
nization can
a
pters. How
e
t
, several opt
i
a
dapters and
e
menting gat
e
r
vices of oth
e
n
Manageme
n
M
via SWIM
a
interface ma
c
ture.
p
rises and S
W
lications in t
h
e
interfaces.
T
ards. The A
t
ential conn
e
t
o selected a
u
Region
not be achi
e
e
ver, the orga
i
ons exist for
expose ser
v
e
ways and a
d
e
r SWIM Re
g
n
t (SWIM) C
o
a
ccess point
s
a
nagement, s
e
W
IM regions
.
h
ese enterpri
s
T
he ASP,
AU
U-2 enterpri
s
e
ctivity betw
e
u
thorized us
e
e
ved across
nization resp
implementin
g
v
ices in othe
r
d
apters for th
e
g
ions in acc
o
o
ncept
s
, which
ecurity,
.
Three
s
es are
U
-1 and
s
e also
e
en all
e
rs.
SWIM
onsible
g
these
r
SWIM
e
ir own
o
rdance
Chapter 3. The SWIM global interoperability framework 3-7
3.2.2.5 Through the use of the gateways and adapters, participants within a SWIM region may then
interoperate with SWIM-enabled applications in other regions by meeting global standards for
interoperability. The impact of the above implies that a service consumer may potentially obtain services
from global SWIM-enabled applications through a variety of paths. However, different service level
agreements (SLAs), governance and security policies, and relative service costs may limit these paths.
3.3 OVERVIEW OF FUNCTIONS AND STANDARDS BY LAYER
Table 1 provides an overview of the functions and standards associated with the different
layers of
the Global Interoperability Framework. The table includes an initial set of candidate standards; additional
standards may be added as needed. Sections 3.4 through 3.7 provide details on the three layers associated
with SWIM. Governance will apply to all these layers and is considered in Section 3.8. The SWIM standards
listed are examples. A brief description of these is provided in Appendix B.
Table 1. Global Interoperability Framework - Overview of Functions and Standards
Layer of Framework
Functions or
Sub layers
Candidate Standards, models,
implementations
SWIM-enabled
Applications
ATS, ATFM, Airline Ops
Information
Exchange Services
Service Interoperability No global standards as yet
Interface Definition
OGC CS-W, WSDL, WADL, WFS, WMS, WCS
Information
Exchange Models
and Schemas
For aeronautical, MET, and flight
information
AIXM, WXXM, IWXXM, FIXM, FIXS, AIXS,
WXXS
Semantic Interoperability
Domain Specific: AIRM
General: RDF/RDFS, OWL, SKOS
SWIM Infrastructure
Enterprise Service Management DDS, JMX, SNMP
Policy WS-Policy standards
Reliability WS-RM & WS-RM Policy
Security WS-Security & SSL
Interface Management (Service
Registration)
OASIS/ebXML
Data Representation
XML, XSD, GML
Messaging SOAP, JMS, DDS
Transport
HTTP, JMS, MQ
Boundary Protection No global standards as yet
Service Registry UDDI, work on-going
Network
Connectivity
Secure Network Connectivity IPv4, IPv6
Naming and Addressing DNS
Identity Management No global standards as yet
Incident Detection and Response No global standards as yet
3-8 Manual on System Wide Information Management (SWIM) Concept
3.4 INFORMATION EXCHANGE SERVICES
3.4.1 As mentioned before, information is a key enabler, shared through SWIM services, for ATM
innovation and performance improvements. SWIM is designed to improve information sharing by making the
right information available to the right stakeholders at the right time. However, the challenge is to do this in
an organized manner. More specifically it requires defining the information exchanges, based on
agreements between stakeholders, and commonly agreed means. Within the concept of SWIM the solution
to the above-mentioned challenge is based on the use of a SOA-based approach whereby application
functionality is exposed through services.
3.4.2 Within the SWIM Global Interoperability Framework, the Information Exchange layer is
instantiated by ‘information services’ as is further explained. Information services ensure interoperability
between ATM applications which consume and provide interoperable information services. Consequently,
the concept of information service is a fundamental building block of SWIM which enables interoperability
through well-defined information exchanges.
3.4.3 Furthermore, applications make use of information as they consume or provide standardized
information services based on the standards defined by SWIM. The definition of a standardized information
service indicates: (1) what a service provides; (2) the service message (the structure of the message at the
logical level); (3) the behaviour; (4) the performance levels; and (5) how the service can be accessed.
Note:— It is necessary to provide the complete definition through a Service Description Document.
3.4.5 Service message interoperability is achieved at the implementation level through the use of
commonly agreed information exchange models, appropriate technology and standards within the scope of
each service and related community of interest. The service definitions and implementation specifications
are made available as open standards. The service definitions also contain the non-functional requirements
and connect to one or more SWIM technical policies, hence providing well defined interfaces for
implementation purposes.
3.4.6 Service consumers can, in principle, combine services together. The role of the common
semantic reference is performed by the ATM Information Reference Model (AIRM) to which the service
message complies for service definition purposes. Service message syntax specifications are treated as a
separate concern based on constraints, opportunities and cost considerations at the implementation level.
3.5 SWIM REGISTRY
3.5.1 Design-time registries
3
help developers locate assets, make decisions about which ones are
best to use among many that might be similarly appropriate or adequate, and understand the various costs
involved in their consumption. Runtime registries help systems make automated, policy-based decisions
about service selection.
3.5.2 An important aspect of SWIM is the overall governance of the service approach. A key
component of the SWIM Concept is the service lifecycle, from the identification of the business needs
through the design until the development of the services. The service lifecycle will need to be managed with
a transparent process for the stakeholders. More information on a typical service life cycle process is
provided in Section 2.6.
3
Registries, as used in this document, include any necessary repository functionality to store registry
artifacts. A functional SWIM can exist without a service repository; it helps, but it is not required.
Chapter 3. The SWIM global interoperability framework 3-9
3.5.3 Achieving interoperability across all ATM areas requires governance. The registry is the key
element which brings SWIM-related interoperability artifacts together and enables policy enforcement where
required. It allows information providers to publish services and information consumers to find appropriate
services based on the information exposed by the registry. Furthermore, the registry brings together
qualified parties as trusted partners. Finally, the registry enables collaborative lifecycle management
enabling participants to progressively plan and engage.
3.5.4 As a consequence the information services and their lifecycles must be stored in a catalogue
and managed. Information service providers maintain and expose these services with their implemented
instances through a SWIM registry.
3.5.5 Although the term “SWIM registry” is used in the singular, there will likely be multiple SWIM
registries in different enterprises or regions; these will be linked together with the aim of functioning as a
single global logical registry for authorized users. The various means of achieving this goal continues to be a
topic of study.
3.5.6 Furthermore, the SWIM registry supports the governance of SWIM and provides the inventory of
reference for service related resources in SWIM. It improves the accessibility to information facilitating a
common understanding of SWIM. Figure 5 illustrates how a SWIM Registry is used by information providers
and consumers.
3.5.7 Given the importance of the registry in the overall SWIM concept, the resources contained
therein are further detailed. These are:
a) service instances (list of services available in SWIM from the various SWIM information
service providers);
b) service description documents;
c) reference models (common models for the implementation of services and information
structures i.e. AIRM);
d) information exchange standards (e.g. AIXM, WXXM, FIXM);
e) policies (constraints to be respected in SWIM for security or other purposes);
f) compliance (describe levels of conformity e.g. SWIM compliance); and
g) participants (e.g. information service providers).
3-10
3.5.8
3
.6.1
different p
a
interopera
b
other wor
d
informatio
n
The registry
a) publicati
o
b) discover
y
c) change
m
service li
f
d) notificati
o
and
e) depende
n
Information
a
rticipants a
n
b
ility, the inf
o
d
s, there is
n
both at the
c
Fi
g
may have th
e
o
n. Enabling t
h
y
. Facilitating
t
m
anagement.
f
ecycle;
o
n. Notifying
s
n
cy manage
m
3.6 I
N
exchange m
n
d made av
o
rmation nee
d
a need for
c
onceptual le
v
Manual o
n
g
ure 5. Con
c
e
following el
e
h
e registratio
t
he discover
y
Enabling the
s
takeholders
m
ent. Facilitat
N
FORMATI
O
odels are de
s
ailable to a
d
s to be cle
a
semantic in
t
v
el and at th
e
n
System Wi
d
c
ept of a SW
I
e
ments of fu
n
n
of new info
r
y
of informati
o
controlled a
n
about chan
g
i
ng the impa
c
O
N EXCHA
N
s
irable when
wide range
a
rly and un
a
t
eroperability
.
e
level of the
d
d
e Informatio
n
IM Registry
n
ctionality:
r
mation;
o
n with searc
h
n
d collaborati
v
g
es in servic
e
c
t analysis an
NGE MOD
E
information
i
of ATM inf
o
a
mbiguously
d
. This requi
r
d
ata that is e
x
n
Manageme
n
h
and brows
e
v
e change o
f
e
metadata
a
d identificati
o
E
LS
i
s provided b
o
rmation co
n
d
efined and
r
es a detail
e
x
changed be
t
n
t (SWIM) C
o
e
capabilities;
f
information
a
a
nd lifecycle
o
n of depend
e
y a large nu
m
n
sumers. To
well underst
o
e
d definition
t
ween syste
m
o
ncept
a
nd the
status;
e
ncies.
m
ber of
permit
o
od. In
of the
m
s.
Chapter 3. The SWIM global interoperability framework 3-11
3.6.2 Information exchange model constructs can be used, for example:
a) to define the information that is exchanged between providers and consumers
(e.g. in process models);
b) to define and manage domain models; and
c) to act as the reference for the definition of the payload of a shared ATM Service.
3.6.3 The concept of information domains can be used to manage the definition of exchange models
as smaller and more manageable units. The initial information domains were identified informally based on
the major service exchanges that were already in use (pre-SWIM). Figure 7 shows several ICAO identified
information domains. Individual States or organizations may choose to define other domains for their own
region, as necessary
4
. Appendix A provides more information on the criteria for the creation of a new
information domain; it also considers the major activities in managing an information domain.
Figure 6. Potential Information Domains
4
For example, the FAA initially defined a domain for NAS Infrastructure Management.
Thisishowwemanagedata
Thisishowusersseeinformation
Identified Information UserbasedInformationDomains
SignificantoverlapwithICAO
identifiedInformationDomains
SeamlessInformationSpace
achievedvia
SWIMenabledapplications,
InformationServices,
A
IRM&exchangemodels,
Registry
3-12 Manual on System Wide Information Management (SWIM) Concept
3.6.4 Current information domains are related to the current subdivision of identified activities. Users
however see the information in a more interrelated way than it is in its current information domain state.
Hence, within each solution space there is a tendency for users to expect seamless and interoperable
information which can be fused. The concept of progressively achieving a seamless information space,
supported by exchange models related to information domains within each user context, is realized by
SWIM-enabled applications. This means that applications which consume and provide information services
may relate to one or more domains, to one or more stakeholders, and to one or more points on the strategic-
tactical time axis.
3.6.5 The Global ATM Operational Concept (Doc 9854) provides guidelines for Information
Management. In particular, it requires that “information management will use globally harmonized
information attributes (2.9.11)”. In the GANP (Doc 9750), fourth edition, the B1-DATM (Service Improvement
through Integration of all Digital ATM Information) module is described as: “Implement the ATM information
reference model, integrating all ATM information, using common formats (UML/XML and WXXM)
for meteorological information, FIXM for flight and flow information and internet protocols”. Convergence to
an ATM information reference model may be achieved in practice through a variety of methods.
3.6.6 The ATM information reference model (AIRM) is defined as a complement to the current
exchange models and used as the semantic reference for SWIM information services. Existing exchange
models will be consistent with the AIRM and may be used to define services for SWIM.
3.6.7 Consequently, at the global level, the AIRM is envisioned to provide support across the various
individual exchange models (AIXM, FIXM, WXXM, AIDX, etc.). Specific examples of the types of support
include alignment in terms of the levels of abstractions, i.e. details provided, as well as in terms of horizontal
scope, i.e. content. The characteristics of the AIRM at this level would:
a) provide consistency with ICAO provisions;
b) complement and support the exchange models in a consistent manner;
c) foster convergence at the semantic level;
d) enable a model-driven approach;
e) provide an integrated reference across ICAO documents (annexes, manuals, etc.);
f) support global interoperability planning; and
g) support SWIM compliance criteria.
3.7 SWIM INFRASTRUCTURE
In a global environment, and considering that the service provision will not be restricted to the
air navigation service provider (ANSP), as has traditionally been the case, the SWIM infrastructure might
differ in the different SWIM implementations, be they local (e.g. ATM support industry), national or regional.
Therefore, the SWIM infrastructure might have different architectures (functional, physical) in
different SWIM implementations. An agreed architectural concept that shall be generic enough to
accommodate the differences in the implementations is needed at a global level. This architectural concept
is the ‘SWIM Access Point’.
Chapter 3.
messaging
SWIM acc
e
informatio
n
(either par
t
shared by
m
include on
e
point can
p
associated
specific S
W
Figure 8.
points in
a
different ar
A
ir Naviga
t
common e
x
The SWIM
A SWIM a
c
, security, lo
g
e
ss points.
S
n
consumers.
t
ially or com
p
m
ultiple syst
e
e
or more o
f
p
otentially co
m
A
s indicat
e
SWIM acce
s
W
IM enterpri
s
Global inte
a
ll the SWIM
chitectures. I
t
t
ion Agreeme
The intero
p
x
change sta
n
global intero
p
c
cess point i
s
g
ging, interfa
c
S
WIM acces
s
The function
s
p
letely) provi
d
e
ms. These
o
these optio
n
m
municate wi
Figure 7.
S
e
d previousl
s
s points) ma
s
e may defi
n
roperability
d
implementa
t
t
is anticipat
e
nts, following
p
erability bet
w
dards or thro
p
erability fra
m
s
a logical e
c
e manage
m
s
points will
s
of a SWIM
d
er and/or co
n
o
ptions are s
h
n
s. Subject t
o
th any provid
S
WIM Acces
s
y, the deta
i
y be differen
t
n
e for its S
W
d
oes not req
u
t
ions. Theref
o
e
d that some
appropriate
c
w
een the diff
e
ugh gateway
s
m
ework
ntity that bu
n
ent, etc.). T
h
be impleme
n
access point
n
sumer syst
e
h
own in Figur
e
o
authorizati
o
ers that are
c
s
Point Impl
e
i
led architec
t
t
in the differ
e
W
IM implem
e
u
ire the sam
e
o
re, each S
W
architectures
c
oordination
w
e
rent SWIM i
m
s
at the appr
o
n
dles a num
b
h
e SWIM infr
a
n
ted by info
r
may be impl
e
e
ms. Some
S
r
e 8. An ente
r
o
n, consume
r
c
onnected to
o
e
mentation
O
ture of the
e
nt SWIM im
p
e
ntation the
f
e
functional
a
W
IM enterpri
s
will be impl
e
w
ith affected
m
plementatio
o
priate levels
b
er of techni
c
a
structure is
r
mation provi
e
mented ext
e
S
WIM access
r
prise SWIM
i
r
s connected
o
ther SWIM
a
O
ptions
SWIM infr
a
p
lementation
s
f
unctional ar
c
a
rchitecture
o
s
e impleme
n
e
mented on t
h
SWIM stake
h
o
ns will be en
s
.
c
al capabiliti
e
the collectio
n
ders as well
e
rnal to or int
e
points may
a
i
mplementati
o
to a SWIM
a
ccess point
s
a
structure (a
s
. As an exa
m
c
hitecture sh
o
f the SWIM
n
tation may
d
h
e basis of R
e
h
olders.
s
ured either
t
3-13
e
s (e.g.
n
of the
l
as by
e
rnal to
a
lso be
o
n may
access
s
.
nd the
m
ple, a
own in
access
d
evelop
e
gional
t
hrough
3-14 Manual on System Wide Information Management (SWIM) Concept
Figure 8. Functions of a SWIM Access Point - Example Only
3.7.1 SWIM Functional architecture example
3.7.1.1 One example of a functional architecture of a SWIM access point is described assuming the
architecture in Figure 8. For convenience, the one on the right is considered as the primary one with
systems applications that it considers internal to the enterprise. The functions are logically divided into three
groups. At the top of the figure are the ATM functions which utilize the SWIM core service functions, shown
in the middle of the figure, to interoperate. At the bottom are the network connectivity functions such as
networking and security functions which are essential for the operation of higher level functions. The
boundary protection functions are split across the SWIM service and network connectivity levels. However,
for convenience, these are described under the SWIM core services.
3.7.1.2 The ATM functions provide specific functionality such as that provided by air traffic control
automation systems, flow management systems, and meteorological information systems. The dashed line
in Figure 8 shows the logical interaction between SWIM-enabled applications. Each application performs a
Service Interface function that makes a set of information services available; these information services may
be invoked by other applications via the SWIM core service functions in the SWIM access points.
3.7.1.3 SWIM distinguishes between SWIM application services (SAS) and SWIM core services. SAS
are available – i.e. visible, discoverable, usable – to authorized systems. The service application interface of
a system is the functional component that makes SAS services available to other authorized systems in a
manner that conforms to the technical standards identified by SWIM. Similarly, external applications outside
the enterprise interoperate with systems within the enterprise by accessing services and/or by providing
Service Security
Incident Detection
and Response
SWIM
Core
Service
Functions
Interface
Management
Messaging
Naming &
Addressing
ATM
Functions
Identity
Management
Enterprise Service
Management(ESM)
Boundary
Protection
Secure IP Network
Connectivity
Application
Service Interface
Authorized
Internal Users
Authorized Internal System
Application
Authorized
External Users
Authorized External System(s)
Application
Info
Exchange
Info
Exchange
Authorized
Internal Users
Authorized Internal System
Boundary
Protection
Service InterfaceService Interface
Service Security
Interface
Management
ESM
Messaging
Network
Connectivity
Functions
SWIM
Access
Point
SWIM
Access
Point
Chapter 3. The SWIM global interoperability framework 3-15
services across the boundary (using their own SWIM access point). ATM information exchanges between
internal and external applications via SWIM are mediated by boundary protection mechanisms which include
security controls at all layers (for both enterprises).
3.7.1.4 On the other hand, the SWIM core services are not visible to other systems but are fundamental
mechanisms that enable consumption of services and information sharing. These core services are solution-
agnostic (not limited to a single process or solution environment) and have a high degree of autonomy so
that they support reuse. The core services are:
a) interface management which provides a standard interoperable means for description,
access, invocation, and manipulation of resources to enable compatible communications
between ATM information providers and consumers. To assure interoperability in the SWIM
environment, interface management will maintain a set of standards for interface definition,
description and discovery. (This function is also termed registry management in some SWIM
documents);
b) messaging includes functions supporting message exchanges with a variety of relationships
between message end-points including one-to-one and one-to-many. It enables message
routing and the distribution of content, as well as functions for efficiently and reliably
delivering that content across SWIM in a secure fashion. It includes functions to support
synchronous and asynchronous information exchange;
c) service security provides functions that are used by systems and core services to ensure
that SWIM services are provided in accordance with established security policies. Service
security functions are used to enforce security policies at the core SWIM services level.
These functions include authentication, authorization, confidentiality, integrity, and access
control functions; and
d) enterprise service management (ESM) supports the management of the information
services associated with providers and consumers, as well as the management of
supporting SWIM core services themselves. ESM includes the monitoring and control of
faults, configuration, accounting, performance, and security.
3.7.1.5 A brief description of the SWIM service functions associated with the core services is in Table 2.
Table 2. Summary of SWIM Core Service Functions
SWIM Core
Service
Core Service
Functions
Function Description
Interface
Management
Service Exposure Provides the capability to expose service information
entities by using a registry.
Service Discovery Provides the capability for service consumers to be
able to easily find information on services sought
including alerts and registry content organization.
Metadata Management Provides the capability for managing the information
in the registry, including managing information about
multiple versions of a given service, as well as
managing information about service level
agreements (SLAs).
3-16 Manual on System Wide Information Management (SWIM) Concept
SWIM Core
Service
Core Service
Functions
Function Description
Messaging
Publish/Subscribe Provides support for publish/subscribe message
exchange pattern. (See Glossary for an expanded
description.)
Request/Response Provides support for request/response message
exchange pattern. (See Glossary for an expanded
description.)
Reliable Messaging Provides support for various types of guarantees for
message delivery.
Message Routing Provides support for message routing between
information providers and information consumers.
Mediation Provides the capability for various types of mediation,
such as data format transformation, between
message senders and receivers.
Message Transport Provides multiple application level transports to any
endpoint.
Security Services
Message Confidentiality Provides mechanisms to ensure that only intended
parties in a message exchange can view messages.
Message Integrity Provides mechanisms to ensure that messages are
not unintentionally altered, and provides assurances
that system data can be trusted to be accurate.
Transport-level
protections
Provide protections at the transport and session
layers to ensure confidentiality and integrity for
system communications.
Identity Management Provides mechanisms for managing the identity and
organizational role of service consumers and service
providers.
Data Access
Management
Provides management of access to data resources
that are based on the requesting entity’s identity,
organizational role, or other considerations such as
transaction state or application.
Security Policy
Management
Provides management of the rules that allow and
limit access privileges to SWIM data resources.
Security Policy
Enforcement
Provides mechanisms to enforce security policies.
Security Monitoring Provides monitoring of SWIM services for any
systems events that may indicate security breach or
fraudulent use of system resources.
Security Auditing Includes the review of security controls to ensure that
they are efficient and effective in controlling
unauthorized access to systems.
Enterprise Service
Management
Asset Management Manages SWIM hardware, software, and network
assets.
Chapter 3. The SWIM global interoperability framework 3-17
SWIM Core
Service
Core Service
Functions
Function Description
Configuration
Management
Manages in-development and operational baselines.
Event and Performance
Management
Monitors and controls faults, service quality including
reliability, availability, performance, diagnostics, and
policy.
Service Desk Support Supports personnel in the use of SWIM services and
resolution of reported problems.
Policy Management Storing, categorizing, updating, and distributing
policies.
Boundary
Protection
Enterprise Boundary
Protection
Prevents malicious content or attacks from being
passed between applications internal to an enterprise
and external applications. Allocation of appropriate
security controls to this function will be a result of a
properly conducted risk analysis by each enterprise.
The boundary protection mechanism may best serve
to limit protocols and communication destination
addresses, and to provide early detection of denial of
service attacks before their effects can be
propagated to the enterprise’s internal network and
systems.
3.7.1.6 Sample network connectivity functions include the networking and security support functions
described below in Table 3. This group of functions represents capabilities and services that are not specific
to SWIM but that SWIM needs to use in support of higher level SWIM services.
Table 3. Network Connectivity Functions
Network
Connectivity
Function
Function Description
Secure IP Network
Connectivity
Allows the components of the SWIM architecture to communicate with one
another using the Internet Protocol (IP). It may include network layer security
services, e.g. tunnels, encryption, network layer access control, etc. as needed.
Both IPv4 and IPv6 will be used within the global SWIM.
Incident Detection
and Response
Monitors the systems and networks of the SWIM architecture for indications of
information system security intrusions or incidents, and supports corrective
action when such intrusions or incidents are detected.
Naming and
Addressing
Provides a domain name system (DNS) that translates from fully qualified
domain names identifying systems to IP network addresses. It also includes the
administrative functions that provide for allocation and management of IP
address space.
Identity &
Credential
Management
Provides management of, and access to, identity information and credentials as
needed to support authentication, authorization, and access control decisions
that are made within the SWIM service security function.
3-18 Manual on System Wide Information Management (SWIM) Concept
3.7.1.7 Each enterprise is expected to implement its own IP infrastructure. Some enterprises may use
the facilities provided by regional partners or commercial service providers to access SWIM. There is no
implicit requirement that a dedicated IP network be set up solely for SWIM.
3.7.2 SWIM technical architecture
3.7.2.1 The SWIM technical architecture provides a view of the standards used in supporting the SWIM
functions. Standards in the SOA environment are evolving rapidly, and should be expected to change, in the
future. Compatibility among standards will be maintained via the use of conversion gateways.
3.7.2.2 SWIM emphasizes the use of web services standards, because these are, for the time being,
promising and widely used standards for implementing SOA in a way that improves interoperability and
flexibility. However, web services are not suitable for all applications. The intent of the SWIM architecture is
to allow other standards to be used when necessary while retaining general SOA principles. To accomplish
this, SWIM components should be capable of including information on services that are provided using a
variety of different technologies and standards. Similarly, SWIM enterprise service management and service
security components should be engineered, to the extent practical, to allow a variety of different
technologies and standards to be managed and secured.
3.7.2.3 Since the standards are evolving and need to accommodate a variety of applications being
considered by member states, an initial classification framework for SWIM technical standards (Figure 9) is
proposed for discussion. The top two layers deal with the exchange of information via SWIM while the others
are involved with the SWIM Infrastructure. The framework is extensible and additional layers may be
inserted or existing layers consolidated over time. As mentioned earlier, governance covers multiple areas
and will rely on the technical standards defined for ESM, interface management, security, policy, etc.
Chapter 3.
3.7.2.4
Some of t
h
ready for i
m
once they
a
efforts ar
e
meteorolo
g
3.7.2.5
that stand
a
not presen
t
of the pre
c
definition o
The SWIM
Figur
e
Examples
o
h
e standards
m
plementatio
a
re widely su
e
focusing o
g
ical data.
A
short ex
a
a
rds appeari
n
t
in the figure
c
ise standard
f SWIM Gov
e
global intero
p
e
9. Initial Cl
a
o
f some SWI
M
are supporte
d
n. Other sta
n
pported com
m
n service d
e
a
mple of pot
e
g in Figure 1
may be sele
c
s that will b
e
e
rnance.
p
erability fra
m
a
ssification
M
standards
a
d
by multiple
n
dards are u
n
m
ercially. Inf
o
e
finitions fo
r
e
ntial SWIM
s
0 may actua
l
c
ted as SWI
M
e
part of SW
I
m
ework
Framework
f
a
re shown in
commercial
v
n
der evaluati
o
o
rmation Exc
h
r
exchange
s
tandards is
p
l
ly not be sel
e
M
standards.
T
I
M is one of
f
or SWIM Te
c
Figure 10; o
t
vendors of S
o
n and may
b
h
ange Servi
c
of AIM dat
a
p
rovided in
A
e
cted as S
W
T
he process
the tasks to
c
hnical Sta
n
t
her standard
OA products
b
e considere
d
c
es are still u
n
a
, Flight Inf
o
A
ppendix C. I
t
W
IM standard
s
to select, as
w
be done as
n
dards
s may also b
e
and are con
s
d
for implem
e
n
der definitio
n
o
rmation dat
t
has to be s
t
s
and that st
a
w
ell as the s
e
part of the
d
3-19
e
used.
s
idered
e
ntation
n
; initial
a, and
t
ressed
a
ndards
e
lection
d
etailed
3-20
a number
appropriat
e
authority,
a
carry out t
h
important
e
Examples
o
In a loosel
y
of entities,
e
rules, polic
a
nd communi
c
h
eir roles an
d
e
nabler for S
W
The infrast
o
f this gover
n
a) define
b) define
c) define
provid
Figure
y
coupled en
v
governance
i
es, and sta
n
c
ation as wel
d
responsibili
t
W
IM governa
n
ructure, sta
n
n
ance include
who is invol
v
the process
e
the SWIM
ers);
Manual o
n
10. Example
3.8 SWI
M
v
ironment su
c
is essential.
n
dards are f
o
l as the mea
s
t
ies. As men
t
n
ce.
n
dards and
the need to:
v
ed in the ap
p
e
s to be follo
w
infrastructur
e
n
System Wi
d
s of SWIM T
M
GOVER
N
c
h as SWIM
w
Governanc
e
o
llowed. Gov
e
s
urement an
d
t
ioned earlier
managemen
t
p
roval and in
t
w
ed;
e
to be pro
v
d
e Informatio
n
echnical St
a
N
ANCE
w
here servic
e
e
establishe
s
ernance defi
n
d
control mec
h
r
, in Section
3
t
of informa
t
the evolution
v
ided by m
e
n
Manageme
n
a
ndards
e
s are provid
e
s
the proce
s
nes the chai
hanisms to e
n
3
.5, the SWI
M
tion all nee
d
of standard
s
e
mber State
s
n
t (SWIM) C
o
e
d and consu
m
s
ses to assu
ns of respo
n
n
able partici
p
M
registry wil
d
to be go
v
s
;
s
(or their
n
o
ncept
m
ed by
re that
n
sibility,
p
ants to
l be an
v
erned.
n
etwork
Chapter 3. The SWIM global interoperability framework 3-21
d) define the need and the nature of a national or regional SWIM Collaborative Authority and,
if so, which components could be provided or managed by that authority;
e) define which information access management functions
5
will be executed by each
information provider/consumer;
f) establish a common set of regulatory policies and standards;
g) promote semantic and structural interoperability among stakeholders by developing a
common set of semantic and structural artifacts (e.g. taxonomies, ontologies, controlled
vocabularies);
h) define the way costs will be shared by the parties participating in SWIM and the possible
cost-recovery mechanisms to be used; and
i) define and establish governance structures at global, regional and local levels.
3.8.1 Governance of information definition
3.8.1.1
SWIM requires governance for the collaborative specification and definition of information within
existing domains, across domains and within potential new domains.
3.8.1.2 Since not all solutions are equally fit-for-purpose for all, it is recognized that local and regional
differences will continue to be required for information items. What truly matters in this context is that the
information must be in a state which can be qualified as “known and managed”. This implies that
governance at the level of a Global Interoperability Framework should be applied to the local and regional
levels to allow for flexibility and take into account some differences necessary due to specific operational
requirements.
3.8.1.3 Appendix A provides additional information on the processes involved in managing an
information domain.
3.8.2 Governance of information services
3.8.2.1
An important aspect of SWIM is the overall governance of the service approach. A key
component of the SWIM concept is the service lifecycle, from the initial identification of the business need
for a possible information service through the following stages — proposal, definition, development,
verification, deployment, deprecation and decommissioning. During the life of an information service, one
should also expect that an information service will need to be changed for various reasons and updates will
be necessary. Managing the change of an information service once it is in widespread use is much more
challenging than creating the initial service; this is because of the countervailing pressures of stability versus
improvement. The Open Group’s SOA Governance Framework provides a good framework that can be
adapted by enterprises (and regions) for their SWIM information services. Section 2.6 provides additional
information on the service life cycle and its management. Thus, service governance addresses concerns
such as:
5
It is assumed here that some information providers within a SWIM region may have additional access
requirements, i.e. some information services may be available to certain consumers only.
3-22 Manual on System Wide Information Management (SWIM) Concept
a) service registration;
b) service versioning;
c) service ownership;
d) service funding;
e) service modeling;
f) service discovery and access;
g) deployment of services and composite applications;
h) security for services;
i) processes and procedures to support service publishing and service validation;
j) documenting the approach to support service lifecycle management and service reuse;
k) verify that the running services are the approved versions;
l) define mechanism to manage Service Level Agreements (SLAs) for services; and
m) provide a mechanism to enable runtime service look-up.
3.8.2.2 In a global context, the ICAO-level governance should stop at the information exchange
services layer. At lower layers, it is expected that global technical standards would be used outside the remit
of ICAO.
––––––––––––––––––––––––––––
4-1
Chapter 4
TRANSITION AND MIXED ENVIRONMENT
This section describes ground SWIM operation during transition and in a mixed (SWIM, non-SWIM)
environment. It is recognized that transition to SWIM may involve additional complexities beyond a mixed
environment.
4.1 PARTICIPANTS
4.1.1 Figure 11 shows a gradual introduction of SWIM with a few digital services and an eventual
merging into full SWIM functionality.
Figure 11. Air ground communications roadmap
AIDC FlightCoordination
&Transfer
ATS–Messaging&Directory
SWIM
SOAPioneer
DigitalMET
NOTAM
FlightObjects
FullSWIM
Functionality
ATSLegacy
AFTN/CIDIN
AIDCLegacy
e.g.OLDI/X.25
AnalogVoice
SurveillanceData
AMHS
FMTP
VOIP
IPBACKBONE
BLOCK0BLOCK1BLOCK2BLOCK3
2013 2018 2023 >2028
S
e
r
v
i
c
e
s
T
e
c
h
n
o
l
o
g
y
4-2 Manual on System Wide Information Management (SWIM) Concept
4.1.2 ATN applications such as ATS inter-facility data communications (AIDC) and ATS messaging
will move to SWIM as and when their performance requirements can be met. Existing legacy aeronautical
fixed telecommunication network (AFTN) and AIDC networks will be modernized and their communications
infrastructure move to IP networks which will permit multiple applications to share the same network.
4.1.3 Given the large number of member States having different levels of needs and sophistication,
different technologies and ATM services are expected. A few States or regions may use SWIM extensively
in the near future. Others will continue to use legacy systems. Interoperability is needed, whether using
existing legacy systems or planning a transition for the long term. This is made possible via specialized
gateways for messaging and a staged transition.
4.2 ROLES AND RESPONSIBILITIES
It is assumed that each member State or a number of States in a specific geographical region will develop
their migration plans based on respective needs and timetables for their current ATM networks and services.
States with legacy systems will have interoperability with other States but will not be able to provide or
consume more complex services unless their systems are upgraded.
4.3 KEY INTERACTIONS
4.3.1
This section illustrates how a phased transition from AFTN/aeronautical message handling
system (AMHS) to SWIM can be accomplished. The description is done in a context of ASP exchanges
because ASPs are the main stakeholders using AFTN/AMHS protocols, but it can be extrapolated to other
stakeholders. At the time of publication of this document, no formal selection of SWIM standards had been
made, and no SWIM information services had been defined. As such the following description is just for
illustration purposes. The actual applicability of this description will depend on a number of factors that
cannot be determined yet.
4.3.2 The legacy AFTN/AMHS is used by many States, primarily to exchange flight plans, notices
essential to personnel concerned with flight operations (NOTAM), and meteorological information. AFTN is
character-oriented, limits character set, limits message length and its switches are interconnected using low
speed lines. The AMHS was specified in Manual on detailed Technical Specifications for the ATN using
ISO/OSI protocols - ATS Message Handling Service (Doc 9880), Part IIB, as a replacement for the outdated
AFTN/common ICAO data interchange network (CIDIN). AMHS is based on ITU-T X.400 messaging
standards. As such, AMHS ‘removes’ the restrictions and limitations imposed by AFTN. ICAO specified
AMHS/AFTN gateways have been implemented and can be used to accommodate a mix of AMHS and
AFTN exchanges (the AFTN limitations would still apply in this case). This mixed environment is shown in
Figure 12. Although the IP connections represented in the figure seem to be point-to-point lines, they will
very likely be implemented through IP networks.
4.3.4 ASPs will start implementing SWIM-enabled systems to take advantage of the benefits
provided by the SWIM services. Full benefits will only be achieved when interaction with other ASPs with
SWIM-enabled systems occurs.
4.3.4 ASPs without SWIM will continue to interoperate but will be limited to the applications they can
support.
Chapter 4. Transition and mixed environment 4-3
Figure 12. Current AFTN / AMHS environment
4.3.5 Due to the current early stage of the SWIM definition at a global level, different possibilities can
be contemplated for the transition period regarding interoperability. Actually, each (to be) defined SWIM
service may have different possibilities; therefore, the transition period and interoperability arrangements
can be different for the different services that will be implemented. A brief description of a number of such
possibilities is provided.
4.3.6 There can be SWIM services for which the interoperability with ‘legacy’ systems will have to be
ensured by the SWIM-enabled system, i.e. it might be up to the SWIM-enabled system to implement the
service in the “SWIM form” and to also support it in the legacy format. Therefore, the SWIM-enabled system
should support both ways of providing such services during a transition period to allow a SWIM migration
path. This case is represented in Figure 13. Again, while the IP connections represented in the figure are
shown as point-to-point lines, they will very likely be implemented through IP networks.
4-4 Manual on System Wide Information Management (SWIM) Concept
Figure 13. Interoperability ensured at application-level
4.3.7 As an example, the SWIM-enabled system A in Figure 13 might represent an upgrade or
replacement of a legacy system managing and distributing NOTAM messages. This new system would both
support the ‘legacy’ NOTAMs as well as a new SWIM service for digital NOTAMs. Other SWIM-enabled
systems (e.g. system B in the figure) will be able to take advantage of advanced functionality provided by
the digital NOTAM service (e.g. geographical filtering). Other ‘legacy’ systems will still be able to
interoperate with the system A with ‘legacy’ NOTAMs as before, but they will not be able to benefit from the
advanced functionality.
4.3.8 There might be other specific SWIM services which can justify (in operational and economic
terms) the definition and implementation of gateways between SWIM and AFTN/AMHS. It can be expected
that this case would be possible for SWIM services for which there is a straightforward mapping with existing
AFTN/AMHS messages, so allowing the definition and implementation of the corresponding gateways. This
case is represented in Figure 14
.
Chapter 4. Transition and mixed environment 4-5
Figure 14. Interoperability ensured in the gateway
4.3.9 In this case, the SWIM-enabled system A in Figure 14 might represent an upgrade or
replacement of a legacy system. This new system would implement a SWIM service (or several SWIM
services). Other SWIM-enabled systems (e.g. system B in the figure) will be able to take advantage of
advanced functionalities provided by such services. In this case, such SWIM service will have a
straightforward mapping with AFTN/AMHS messages
6
. Therefore, it can make sense in operational and
economic terms to define and implement gateways between SWIM and AFTN/AMHS which would allow
other ‘legacy’ systems to exchange information with system A.
4.3.10 Finally, there might be some specific SWIM services for which there will be no interoperability
with ‘legacy’ systems (Figure 16). Such services will be just provided and consumed by SWIM-enabled
systems. This can be the case for services with a full new business logic that is not implemented or
supported by the ‘legacy’ systems, so the interoperability with legacy systems cannot be justified in
operational / economic terms.
6
The straightforward mapping is not just required for the payload, but also for other aspects like
addressing.
4-6
Fi
g
4.3.11
A
FTN/AM
H
standardiz
a
transition
p
g
ure 15. So
m
In summar
y
H
S), it should
a
tion intends
p
lans will dep
e
m
e new SWI
M
y
, when cons
be noted tha
to cover up
e
nd on the s
p
Manual o
n
M
Services w
i
idering inter
o
t, while AFT
N
to the servic
p
ecific SWIM
s
–––––––––
n
System Wi
d
i
ll only be s
u
o
perability be
t
N
/AMHS are
r
e level. The
r
s
ervices to b
e
–––––––––
d
e Informatio
n
u
pported by
t
ween SWIM
r
elated mainl
y
r
efore, the in
t
e
defined an
d
––––––
n
Manageme
n
SWIM-enabl
e
and legacy
s
y
to the trans
t
eroperability
d
the differen
t
n
t (SWIM) C
o
e
d systems
s
ystems (in th
port protocol
,
and the ass
o
t
option(s) av
a
o
ncept
is case
,
SWIM
o
ciated
a
ilable.
5-1
Chapter 5
FUTURE DEVELOPMENTS
Three future SWIM-related developments that may be of interest to member States are introduced. The first
one refers to the GANP ASBU modules on SWIM. The second refers to activities exploring SWIM air-ground
alternatives. The third refers to the interconnections of SWIM services across regional boundaries.
5.1 GANP ASBU MODULES ON SWIM
5.1.1 SWIM is specifically included in the GANP (Doc 9750) as shown in Figure 16.
5-2
5.1.2
modules
r
integration
ICE (B1-FI
C
5.1.3
managing
Since a c
o
determine
be stagger
e
SWIM is
m
r
elating to s
(B0-DATM
&
C
E, B2 -FIC
E
SWIM will
information
d
o
st will be
a
if a positive
p
e
d throughou
F
m
ainly contai
n
ervice impr
o
&
B1-DATM)
a
E
, and B3-FI
C
introduce a
s
d
uring the en
t
a
ssociated wi
p
erformance
t the globe.
Manual o
n
F
igure 16. IC
A
n
ed in the
A
o
vement thr
o
a
s well as m
o
C
E) are impor
t
s
ignificant ch
a
t
ire life cycle
th implemen
case exists i
n
n
System Wi
d
A
O GANP R
o
A
SBU modul
e
o
ugh digital
o
dules for i
m
t
ant early co
m
a
nge in the
b
from data o
ting SWIM,
n
their areas
d
e Informatio
n
o
admap on
S
e
s B1-SWIM
aeronautical
m
proving ope
r
m
ponents of
t
b
usiness pra
c
rigination to
it is recom
m
. Consequen
n
Manageme
n
S
WIM
and B2-SW
information
r
ational perfo
r
t
he overall S
W
c
tices of the
its usage an
d
m
ended that
tly, the depl
o
n
t (SWIM) C
o
IM. In additi
o
manageme
r
mance thro
u
W
IM.
ATM commu
d
decommis
s
regions and
o
yment of S
W
o
ncept
o
n, the
nt and
u
gh FF-
u
nity for
s
ioning.
States
W
IM will
Chapter 5. Future Developments 5-3
5.1.1 Technology requirements
5.1.1.1
The technological requirements for deploying SWIM are significant and essential.
Harmonization of data communication infrastructure for air-ground communication at an appropriate
performance level is necessary. On the ground, internet protocol (IP) should be available on all systems and
the implementation of ATS inter-facility data communications (AIDC) as the basic means for automating
ground-ground communications between ATS units could be considered as a facilitating intermediate step.
A common data communication baseline is essential to ensure future benefits of SWIM developments. The
implementation of an agreed common time reference for all systems (air and ground) is important for
applications and services supported by SWIM.
5.1.1.2 At the first stage (Block 1), SWIM is composed of ground applications relying on IP networks,
while most air-ground data exchanges remain based on point-to-point communication. Air-ground data link
services and infrastructure are converging to ATN Baseline 2, along with development of enabling ground
network technology and new commercial satellite communication.
5.1.1.3 Starting from Block 2 and into Block 3, the aircraft should be fully connected to the network as a
SWIM access point, enabling full participation in collaborative ATM processes with access to voluminous
dynamic data including meteorology. Initial implementations will be for non-safety critical exchanges
supported by commercial data links.
5.1.1.4 Technological requirements and the linkages between the various blocks and modules of the
ASBU framework are detailed in the technology roadmaps of the GANP (Doc 9750), fourth edition.
5.1.2 Deployment considerations
5.1.2.1
The development of ICAO provisions for access to information and use of SWIM-enabled
applications is necessary. Performance requirements for various data-communication channels in terms of
safety, security, throughput and latency should also be developed. Evaluation of data transmission volumes
in relation to traffic forecasts as well as future applications and services will assist infrastructure planning
including spectrum and bandwidth requirements. The definition of common data formats and information
exchange protocols is considered a priority to support progressive deployment or adaptation of appropriate
ATM system architecture.
5.1.2.2 The impact of SWIM implementation on various ATM systems is likely to be complex and
should not be underestimated. Progressive deployments of SWIM in clearly-defined phases with transition
arrangements that allow for a mixture of SWIM and non-SWIM systems must be considered. SWIM is
intended to be implemented globally, as performance needs dictate. Agreement on global or regional
implementation milestones for some stages could be beneficial in harmonizing deployment.
5-4 Manual on System Wide Information Management (SWIM) Concept
5.2 SWIM AIR-GROUND
5.2.1 The Global Air Navigation Plan (Doc 9750) introduces ASBU B2-SWIM “Enabling Airborne
Participation in Collaborative ATM through SWIM” which considers the aircraft to be a fully connected
information node in SWIM, enabling full participation in collaborative ATM processes with exchange of data,
including meteorology, that starts with non-safety critical exchanges supported by commercial data links.
5.2.2 In general, the exchange and access to information between flight crews and ground
operations
7
facilities are often imbalanced. Specifically, flight crews do not have access to a common or
shared information platform to fulfil their advisory
8
needs in-flight or on the ground. The information
unavailability, whether on demand or in near real-time, prevents flight crews from making informed decisions
and hampers their ability to plan strategically and tactically.
5.2.3 Furthermore, ground-based systems and air traffic managers do not have a single mechanism
to obtain real-time information updates about a specific flight, its operation, and its surrounding airspace
conditions. These shortfalls inhibit the predictability, flexibility, and efficiency of the ATM system and have
motivated an exploration of airborne use of SWIM by ATM System participants.
5.2.4 Air-ground solutions are being explored and will leverage the SWIM infrastructure to give flight
crews access to relevant, system-wide information. The information delivered to flight crews via an
alternative communications medium will come from a common infrastructure – SWIM. However, not all ATM
information will be available in order to protect proprietary information and security. Making information
available will increase common situational awareness between flight crews and ground operations, while
promoting strategic/tactical planning and more informed decision making. It will also be the mechanism that
will afford airspace users the ability to provide near real-time input, such as atmospheric conditions, to
ground operations facilities and systems. This timely bi-directional communication link will help create a
shared ATM system picture and is expected to contribute to increased predictability, flexibility, and efficiency
within the ATM system
.
7
“Ground operations facilities” are defined as all ASP facilities (centers, terminal facilities, central traffic
flow management, towers, etc.) and operations centers (AOCs/FOCs).
8
The term “advisory”, here, is not synonymous with ATM advisories such as Traffic Management
Initiatives issued by traffic flow management. Advisory information is defined as supplemental information
that is not necessary for command and control of an aircraft.
Chapter 5.
5.2.5
environme
n
primary co
m
portrays a
The oper
a
boundary
p
managem
e
to their air
c
9
The da
t
SWIM, ma
n
Future De
v
F
i
Figure 17
n
t including
m
mand and
bi-directional
tions centre,
p
rotection se
e
nt service
9
).
c
raft are sho
w
t
a managem
e
n
ipulating th
a
v
elopments
i
gure 17. Ex
a
is a “to-be”
the importa
n
control met
h
commercial
pictured h
e
rvices) or th
r
On the right
w
n.
e
nt service
p
a
t data, and d
i
a
mple Far-T
e
representati
n
t role air-g
r
h
ods are de
p
data link via
e
re, may re
c
r
ough the ai
r
the customa
ictured is a
v
i
stributing rel
e
e
rm Air-Gro
u
on of air-gr
o
r
ound soluti
o
p
icted (e.g. v
air-ground
s
c
eive adviso
r
r
borne soluti
o
ry connectio
n
v
endor(s) m
a
e
vant inform
a
u
nd Informa
t
o
und inform
a
o
ns will fill.
v
oice, data c
o
s
olutions use
d
r
y informatio
n
o
n (via the v
n
s between
a
a
naged servi
c
a
tion in a usa
b
t
ion Exchan
g
a
tion excha
n
On the left
o
mm). The
m
d
solely for
a
n
through ei
v
endor mana
g
a
irline operati
o
c
e, accessin
g
b
le format to
g
e
n
ge in the
f
side of the
m
iddle of th
e
a
dvisory infor
m
ther SWIM
(
g
ed air-grou
n
o
ns centres
(
g
raw ATM
d
their custom
e
5-5
f
ar-term
figure,
e
figure
m
ation.
(
across
n
d data
(
AOCs)
d
ata via
e
rs.
5-6 Manual on System Wide Information Management (SWIM) Concept
5.3 INTERCONNECTING SWIM SERVICES ACROSS
ASP/REGIONAL BOUNDARIES
5.3.1 Several ATM service providers have already begun implementing SWIM. During transition to a
global SWIM environment, these local SWIM enterprises are most likely to connect, by necessity, to similar
enterprises through a series of bilateral agreements to achieve interoperability. Unless planned upfront, a
global SWIM can, de-facto, emerge as a large collection of these agreements, thereby complicating the
achievement of global interoperability. The result would be inflexibility at a global level owing to the
complexity of managing change.
5.3.2 To avoid such an outcome, there needs to be a means for the global provision and connection
of services across SWIM enterprises. Several strategies may be applied, including:
a) prescriptive global and regional interface specifications, as is current practice for ATM
ground-ground communications. While this approach addresses the proliferation of
agreements, its lack of flexibility is at odds with the desired agility. SWIM is expected to be
agile and provide the information exchange necessary for future capabilities as they are
deployed;
b) use of industry standards and development of additional standards for areas where none
exist. Given the evolving nature of IT standards and the fact that differing SWIM Regions
will implement standards in accordance with their needs, the use of gateways through the
options as previously described in Section 3.2.2 will be required. Advantages include:
(i) the application of existing standards enables the use of developed tools and an
existing knowledge base thereby lowering development costs and risks; and
(ii) new standards may be adopted where required as they become mature.
c) accept the proliferation of bilateral agreements initially, with the assumption that
standardization will emerge organically as part of individual ASP’s performance-based
processes. The use of gateways remains during transition and has its advantages, as
follows:
(i) provides the simplest governance model;
(ii) enables individual ASPs and their Regions to consider interoperability as part of their
performance case; and
(iii) allows first adopters the flexibility of implementing the newest technology,
demonstrating tangible performance benefits for other ASPs.
d) use of a public/private partnership for global SWIM in which a SWIM enterprise may use a
third party provider, be it public or private, to enable the delivery and receipt of services
from other SWIM enterprises (Figure 18). This approach provides advantages, such as:
(i) enabling a service-based cost system for enterprises at different stages of SWIM
implementation;
(ii) cost-sharing of fixed development costs;
(iii) providers can more easily take advantage of the latest technologies, architectures
and governance models to manage interoperability; and
(iv) greater flexibility as lower-level implementation changes can occur, subject to
performance standards in accordance with service-level agreements, without
necessitating review and consensus across ASPs.
Chapter 5.
Note.
Future De
v
The select
e
v
elopments
Figure
1
e
d regions fo
r
1
8. Public/pr
i
SWIM are ill
u
–––––––––
i
vate model
f
u
strative as
m
–––––––––
f
or Global S
W
m
ore SWIM r
e
––––––
W
IM
e
gions may
d
d
evelop.
5-7
A-1
Appendix A
SWIM AND INFORMATION DOMAIN MANAGEMENT
This Appendix explains the relationship of SWIM with Information definition and information domain
management. Section A.1 introduces four topics that arise regarding information management and
harmonization especially in a global context. Sections A.2 and 0A.3 introduce the concept of information
domains, and some criteria that may be applicable in ensuring consistency and avoiding duplication in
domain definition. Sections A.4 through A.5 describe a process to manage, perform, and oversee the
performance of activities within one or more information domains.
A.1 Major ATM IM Topics
The following four topics (in question/answer form) relating to information management are of interest to
SWIM stakeholders:
1. Who has the responsibility to define information relevant to ATM? Pioneer States and the
aviation stakeholders have cooperated in defining information relevant to ATM operations. These
activities have been coordinated with ICAO and the definition continues to evolve as more
sophisticated ATM concepts are introduced globally. As standardization of information is key to
SWIM, and as SWIM is at the heart of the future ATM concept, more collaboration and
coordination involving multiple parties will be required.
2. How is information organized so that one can understand its meaning and build means to
appropriately exchange and share? This has progressed via multilateral efforts in defining the
organization of information. This has led to the definition of data exchange models such as the
AIXM, the WXXM and the FIXM and in the most mature cases to concrete implementations and
commercially available solutions. ICAO has identified the ATM Information Reference Model
(AIRM) under the ASBU Digital ATM Information Management (DATM) module to capture all
types of information used by ATM in a consistent set of data and service models.
3. How is information mapped to services delivered? Traditionally each region defined its
services for specific domains and identified the information elements associated with those
services. The definition of agreed upon global information exchange services is still in progress.
Reference models for information services have been proposed in some regions. A global
service description template is required.
4. How does one avoid duplication and ensure consistency between formats and data
items? This requires multilateral cooperation and coordination at the level of the architectural
approaches to define the information elements applicable to ATM, and commonly agreed and
understood processes and criteria. Amongst these criteria there is a need for clearly defined
SWIM compliance criteria. The ICAO process is central to this cooperative endeavour.
A-2 Manual on System Wide Information Management (SWIM) Concept
A.2 Information Domains
An information domain is focused on identifying, defining, and satisfying the information needs of the set
of business activities associated with a specific area. The concept of information domains, information
exchange services, and information exchange models was introduced in Sections 3.4 and 3.5.
The concept of progressively achieving a seamless information space, supported by exchange models
related to information domains within each user context, is realized by SWIM-enabled applications. This
means applications may consume information services that relate to one or more domains. As a
consequence, the provider side with the current domain realities needs to be combined with the consumer
needs in a balanced and agile way. SWIM intends to address this balance.
Therefore, a first key SWIM concept is the separation between information provision and information
consumption. A second key concept is the use of logical information services that can be instantiated at
the physical level in different ways, thus enabling an architectural approach based on “one logic and
multiple potential solutions”.
This implies that both provider and consumer views need to be considered at the specification and
implementation levels to build fit-for-purpose solutions. To address this complex problem the ATM
Information Reference Model and the Exchange models play complementary but clearly delineated
roles.
Exchange models have been defined for the following domains of ATM operations: meteorological
information (WXXM), aeronautical information (AIXM), flight and flow information (FIXM), and surveillance
information (ASTERIX). In addition it is worth noting that other communities of interest are developing
exchange models such as is the case for the industry requirements for aerodrome mapping, terrain and
obstacle information involving organizations such as RTCA, EUROCAE and ARINC.
What ultimately binds the providers and the consumers together in data exchanges are the information
services which represent a formal contract between provider and consumer. Information services
themselves are identified and defined using the ATM information reference model. Information services
implementation specifications are based on exchange models since they are closer to the solution space.
Altogether Information services are made available through an information service reference model and
their implemented instances exposed through the SWIM registry.
SWIM-enabled applications are thus enabled to access to multiple information domains via their respective
domain services and via further cross domain services, built using SWIM-compliant exchange models,
altogether providing improved situational awareness to different classes of users.
A.3 Criteria applicable to Information Domains
Each information domain identified serves a distinct business need; however, these domains may consist
of shared interests and relationships. This means that harmonization must occur between information
domains to ensure element data and information content matches the intent. As the aggregate pool of
ATM data and information is quite broad, some criteria are necessary to identify which data and
information should be organized and defined within which domain. An outcome of the rationalized
framework for harmonization will be identification of dependencies. Examples include:
Appendix A. SWIM and Information Doman Management A-3
a) Information items that are contained in one domain but used by another.
b) Information items that might be ambiguously contained in two or more information
domains.
c) Information items with dependencies (value of one affects the other, or they are
correlated). These require processes for ensuring that update cycles are synchronized, or
versioned in a manner to prevent errors.
A specific example of a dependency that has already surfaced is the communication code and flight type
data represented in the aeronautical information domain and the flight information domain.
The paragraphs below provide a set of guidelines for identifying an information domain and the criteria are
described separately. It is recognized, however, that identifying a new information domain is not a
necessary task for most regions; most regions that are newly-adopting SWIM are likely to adopt those
recommended by ICAO.
Essentially, any candidate information domain should:
a) represent a distinctive set of mission-related business activities
Examples include: (a) navigation activities related to the Navigation Domain, and (b)
Trajectory Management related to a series of cross domain activities such AIM, Flight,
MET, etc. (these activity groupings may also be referred to as operational focus areas).
b) have requirements for data and information that are unique to it or can be used
differently from other mission-specific activities or existing information domains.
For example, surveillance and navigation activities both use geospatial data and
information; but they use it differently and each has a different view of it. Surveillance
activities use this data and information to answer the question “Where are you?” or “Are
you supposed to be there?” versus Navigation activities that use it to answer the questions
Where am I?” and “How do I get there?” However in both cases the fundamental
geospatial nature of coordinate information and the way the information is understood
should not differ, hence allowing both domains to apply similar software components at a
lower level and thus providing cost savings to the organizations at a higher level. For this
reason the ATM information reference model provides foundation classes which could be
used throughout ATM as a common and standardized pattern, structurally enabling cost
savings. As a consequence this separation of concern is important in information
management as it allows each domain to focus on those aspects which are specific to
each of them. In this example neither the surveillance nor the navigation domain should
define what a coordinate is as it would be provided by SWIM whilst respecting the different
domain purposes.
c) represent the data and information needs of a specific group of people who perform
these mission-specific activities (the practitioners) and who may be involved with: (a)
the capture or generation and validation of data; or (b) the creation, update, processing,
distribution, or use of information within these domain-specific activities.
A-4 Manual on System Wide Information Management (SWIM) Concept
A.3.1 Quality Criteria for Information Domain
This section identifies and describes an initial set of guidelines to ensure the formation of an information
domain is of high-quality. The key criteria are presented in Table A-1, Information Domain Quality Criteria.
These criteria can be used to develop and maintain information domain models and were identified by
others who have created information domains and have passed on their recommendations, lessons
learned, and best practices. Therefore, the citation (from sources) of these criteria is provided within the
table, when a unique guideline was identified.
Table A-1. Information Domain Quality Criteria
Information
Domain Quality
Criterion
Information Domain Quality Criterion Guideline
Scope
One of the most important aspects to consider initially when developing an
information domain model is to ensure all involved parties agree to an explicitly
detailed definition of the scope. Specifically, where two or more organizations or
groups are involved, the information domain model should identify and describe): (a)
what activities and processes are to be modelled and whose are going to be
modelled; (b) what information is to be modelled and whose information is going to
be considered; (c) the applicable requirements and constraints, if any; and (d) the
intended and desired results and outcomes. This ensures that the effort will address
only those areas identified and eliminate any confusion later on. Also, the scope
must be manageable and do-able by the specified parties – too large a scope and
the process and products become unwieldy and costly and too small may not be
worth the effort or be a waste of resources. (Lasschyut, van Hakken, Treurniet, &
Visser, 2004) pp. 9-11, 9-12.
“A system is said to be part of a domain when it is able to interact with other
systems by making use of the domain’s exchange language… The size or scope of
a domain determines how many and what kind of systems belong to that domain.
Since a domain represents an information standard, its scope can also be specified
as the kind of information that is common and exchanged between systems within
the domain. The scope must be clearly defined in order to avoid wrong usage of the
standard.” (Lasschyut, van Hakken, Treurniet, & Visser, 2004) p. 9-30
In a large environment or industry like air transportation, “…having multiple domains
is usually unavoidable. The real challenge in this is finding an optimal partition of the
total interoperability area. This comes down to finding a proper scope for each
domain as well as the best subdivision of the whole area into domains.” (Lasschyut,
van Hakken, Treurniet, & Visser, 2004), 9-31
Purpose
The purpose of the modelling effort should be clearly and concisely stated and
agreed to by all involved parties. It should also include a description of the intended
and desired results and outcomes in as much detail as possible. It should include
the different artifacts that are required to satisfy the description of the model,
including (a) the type of artifacts to be provided, acquired, or developed; (b) the
applicable descriptions and models of the information and mappings down to the
types of data requirements involved; (c) the supporting scenarios and use cases
necessary to describe the activities involved; and (d) a description of the
development process methods, techniques, and tools to be employed. This will
ensure that the desired result is obtainable and it is achieved for exactly those
purposes for which it is meant to be (Lasschyut, van Hakken, Treurniet, & Visser,
2004), p. 9-11
Appendix A. SWIM and Information Doman Management A-5
Information
Domain Quality
Criterion
Information Domain Quality Criterion Guideline
Partitioning
Scope into
Multiple Domains
“A domain typically contains systems with much information in common, which is
exchanged between them relatively frequently. So a domain represents a clustering
of systems which are closely related [that can be based on similar information
content, functionality of systems, quality requirements (such as security and
timeliness), or the organizations that use or own the systems]. This implies that a
suitable initial set of domains is largely derived by grouping systems that exchange
much similar information. But enterprise-interoperability implies there is a need to
interconnect potentially any system with any other. This means that systems out of
different domains must be able to talk with each other as well. In other words,
domains have to be linked somehow. This happens in the same way individual
systems are clustered into domains; the initial (or ‘basic’) domains may be grouped
into new domains at a higher level. A higher-level domain represents a set of
domains (groups of systems) which are interconnected by means of a common
exchange language.” (Lasschyut, van Hakken, Treurniet, & Visser, 2004), p. 9-31
Level of Detail
All involved parties should agree at the outset on the level of detail desired.
Any modifications to that agreement should be documented and agreed before
any changes are made. (Lasschyut, van Hakken, Treurniet, & Visser, 2004), pp. 9-
12, 9-13
Shared
Information and
Artifacts
All involved parties should agree at the outset to information and artifacts that are to
be shared. The agreement should clearly state who is going to provide whom the
information or artifacts, where, when, and how often. The agreement should also
identify who “owns” what information and artifacts to be shared and what: (a) “rights”
are provided to or permitted by its recipients; and (b) “restrictions” or “constraints”
apply, given specified circumstances and situations. This is particularly sensitive if
commercial or “for profit” organizations are involved (Lasschyut, van Hakken,
Treurniet, & Visser, 2004) p. 9-12
Methods of
Communication
among Involved
Parties
It is always good project management practice to develop and execute a
communications plan that identifies who, when, and how managers, team members,
and stakeholders should be kept abreast of the involved parties efforts. The initial
agreement should clearly state the roles and responsibilities and the communication
expectations of these individuals. Of course, any amendments to the agreement
should be clearly documented, agreed, and communicated to the respective parties.
Comprehensive
The quality of information (necessary to adequately cover the scope or a specific
topic within the scope) must be: (a) determined up front; (b) agreed to by all
involved parties; and (c) stated in such a way that it is satisfactory to and meets, if
not exceeds, the needs of the information consumer. (Eppler, 2006). IAIDQ
Glossary
Information
should be
Uniquely
Identified and
Unambiguously
Defined
The information (and underlying data) must be captured and made available to all
involved parties, in accordance with the agreement(s) and Communication Plan.
The identity and definitions of this information (and corresponding data) should be
captured and documented in such a manner that it can be uniquely identified and
unambiguously defined across the specified organizational boundaries, domains,
and heterogeneous systems. (Heath & Bizer, 2011) pp. 7-15.
A-6 Manual on System Wide Information Management (SWIM) Concept
Information
Domain Quality
Criterion
Information Domain Quality Criterion Guideline
Knowledge
should be
Captured and
Available
Any knowledge (e.g. business rules, methods, techniques, best practices, lessons
learned), that is deemed important to the task at hand, should be captured and
made available to all involved parties as specified in the agreement. (Heath & Bizer,
2011) pp. 26-27
Flexible Design
The artifacts developed should be built or developed in such a way that they may
easily be maintained and updated. The requisite information (and corresponding
data) should be harmonized and semantically complete across the domain and
organizational boundaries of the involved parties. (Lasschyut, van Hakken,
Treurniet, & Visser, 2004) p. 9-14
Information
should be easily
Discoverable
The information (and underlying data) must be captured and made available to all
involved parties, in accordance with the agreement(s), should be seamlessly and
easily discoverable, and any new information (or underlying data) should be easily
integrated with the existing information in the artifacts, registries, and repositories.
(Heath & Bizer, 2011) p. 26
Complete
The description of the domain and associated information should be complete
based on the definition of the agreed scope and, secondly, on the desired output or
result specified in the purpose of the initiative.
“The usual defects related to completeness include:
a) The omission of domain concepts, and
b) The omission of relationships.
In a domain model there is actually a reverse kind of completeness fault. Domain
models may actually include too much information. There is a tendency to include
implementation details particularly when the project is reengineering an existing
application. The risk of “over completeness” is that implication decisions may be
made too soon. By inclusion in an analysis model these decisions may be viewed
as requirements rather than the target of critical examination.” (McGregor,
unknown).
Each Data item
should have a
Unique Identifier
To ensure different data items are the same and can be easily found, each data
item needs to have a unique identifier assigned. For those data items that are going
to be exchanged, we recommend a universal or globally unique identifier be
assigned. With the popularity of Web Ontology Language (OWL) [sic] and Resource
Description Framework (RDF) on one end of the spectrum and taxonomies and
ontologies on the other, semantic technologies are moving towards establishment of
unique identifiers for each data item. Due to the need to exchange information at the
global level, it is recommended the assignment of globally unique identifiers for
each data item that is shared. (Heath & Bizer, 2011) pp. 7-27
A.4 Major Activities in Information Domain Management
Five major activities are associated with managing a domain. These are executed by different individuals
or groups with different roles, as follows:
Appendix A. SWIM and Information Doman Management A-7
Manage information domain community-related activities – this activity performed by the
community manager(s), establishes and manages the activities of the information domain. Sub-
activities include:
a) establish information domain community;
b) establish and maintain information domain membership; and
c) manage activities of information domain community.
Manage activities across domains – performed by the management council, this activity evaluates
and resolves matters, interests, and issues which surface from the information domain communities
that have a conflict or which need to be considered and resolved. Sub-activities include:
a) resolve conflicts and issues within and among information domains;
b) establish, maintain and ensure compliance with applicable policies, directives, methods
and procedures; and
c) establish maintain and ensure compliance with applicable standards and standard
toolsets.
Perform information domain community-related activities – performed by the community
members, this activity performs the “real work” associated with the activities of the information domain.
Sub-activities include:
a) maintain information about information domain community member;
b) perform activities of information domain community;
c) comply with applicable laws, regulations and rules;
d) comply with applicable policies, directives, methods and procedures;
e) comply with implementation and execution of standards; and
f) comply with implementation, execution and usage of standard toolsets.
Oversee Performance and Management of Information Domain community-related activities
performed by the regulator, this activity assures the communities’ compliance with applicable laws,
regulations, rules, policies, methods, practices, procedures, standards and tools. Sub-activities
include:
a) assures compliance with applicable laws, regulations and rules;
b) assures compliance with applicable policies, methods, practices and procedures; and
c) assures compliance with applicable standards and standard toolsets.
A-8 Manual on System Wide Information Management (SWIM) Concept
Govern Information Domain community-related activities – performed by the governance body this
activity governs the activities of the communities at a global or international level. This activity
adjudicates conflicts and issues among information domains.
A.5 Relationship to SWIM
A.5.1 Information Management
Information Management requires a process where the management of an organization or group plans,
organizes, provides leadership, and controls the:
a) need for addition or improved information or information artifacts or resources based on
business requirements;
b) acquisition of data (to make information) and information (from external sources);
c) production of information or information artifacts or resources (which may also include content
management) that is fit for use/purpose of the domain;
d) processing (or transformation) of information;
e) retention, physical storage, and retrieval of desired information, information artifacts, and
information resources;
f) distribution of information, information artifacts, and information resources to primarily
information consumers and secondarily to information service brokers and information service
providers (see definitions below in this section);
g) utilization of information, information artifacts, and information resources to limit unauthorized
access and use, malicious and unintentional modification or destruction, and ensure
conformance with applicable laws and regulations; and
h) maintenance of information, information artifacts and information resources to ensure they are
up-to-date and remain relevant in their content or appearance or format.
Information management activities are performed by the management of information producers and are
referred to as “Information Managers.”
Table A-2 summarizes the differences in the roles between the areas of responsibility and functions:
information domain process, information operations, information management, information oversight, and
SWIM. Areas of responsibilities/functions are described following the table. Further explanations of the
terms used are in the following subsections.
Appendix A. SWIM and Information Doman Management A-9
Table A-2. Comparison of Roles among Information Domains, Information Management,
Information Oversight, and SWIM
Information
Domain Process
Information
Operations
Information
Management
Information
Oversight
SWIM Technical
Infrastructure
Data Perspective
Data Producer Data Manager Data Overseer
(Regulator)
Data Processor
Data Provider
Data Consumer
Information Perspective
Information
Producer
Information Manager Information
Overseer
(Regulator)
Information
Processor
Information
Provider
Information
Consumer
Community
Member
(Practitioner,
Involved Party,
Beneficiary)
Information
Overseer
(Regulator)
Community
Manager
Management
Council (group of
Community
Managers)
Service Perspective
Service Consumer Service
Overseer
(Regulator)
Service Producer
Service Broker
Service Operator
Service Provider
Service Manager
A.5.2 Information Oversight
Information Oversight requires a process where overseers and regulators monitor, examine, and
evaluate the performance of the operations and management to:
a) ascertain whether they are in compliance with the appropriate and applicable laws,
regulations, rules, policies, methods, practices, procedures, standards, and standard toolsets;
b) assert vested authority and work with operations or management when non-compliance is
identified to bring their actions back into the range of compliance; and
A-10 Manual on System Wide Information Management (SWIM) Concept
c) issue violations for infringements, or sanctions where enforcement is required, should
operations or management still remain outside the boundary of compliance after initial
notification of non-compliance.
Information oversight activities are performed by overseers; who may also be referred to as “Regulators.
A.5.3 Information Service Management
Information Service Management is a process where the management of an organization or group
plans, organizes, provides leadership, and controls the:
a) need for new or improved information services;
b) design of new or re-engineering of existing information services to ensure they meet, if not
exceed, the needs of the information consumer;
c) development and subsequent implementation of new, re-engineering, or upgraded information
services;
d) operation of information services (whether manual or automated);
e) provision or delivery of information services (whether manual or automated – and includes the
provision of communications operations and management);
f) utilization of information services to: (a) limit unauthorized access, malicious and unintentional
disruption or cessation of service, and ensure conformance with applicable laws, regulations,
and service agreements and contracts; and (b) monitor the level of service provision and
utilization to ensure up-to-date information services and high-quality information is available to
information consumers to use to make informed, intelligent decisions or take action in
response to a stimulus and ensure they are satisfied with the services they consume; and
g) maintenance of the information services to ensure the information services are kept up-to-
date and appealing to the information consumers.
Information service management activities are performed by the management of Information service
brokers, providers, and operators and are referred to as “information service managers.
In summary, the information management activities are related to the creation of the information artifacts
(products), and require an information manager role and information producer role. The information
domain community activities involve preparatory work to get the information harmonized across different
communities and made ready to be shared. The information service management activities are related to:
(a) the actual delivery of the information or information artifact to an information consumer; or (b) the
performance of an information-related service for an information consumer. The information service
management activities involve a service manager role, a service broker role (optional), one or more service
operator roles, and one or more service provider roles.
B-1
Appendix B
SHORT DESCRIPTION OF POTENTIAL CANDIDATE SWIM
STANDARDS
This appendix provides a short description of the potential candidate SWIM standards
10
that were
mentioned in Section 3.7.2 SWIM technical architecture.
B.1 Information Exchange Services
B.1.1 Service Interoperability
Information exchange services are still under definition and no interoperability standards for the services
exist. However, there is general agreement that the initial information exchange services need to be
defined for aeronautical information exchange, flight information exchange, and meteorological information
exchange. Individual ASPs and some SWIM regions have undertaken some efforts in defining these
services. The definition of these services is very important for member States in agreeing upon a global
SWIM services and how they can make use of such services. Additional information exchange services
are planned.
For example, Single European Sky ATM Research (SESAR) provided network operations plan Business-
to-Business (B2B) Web Services have been grouped over 4 domains:
a) flight services (flight preparation, flight plan filing and management);
b) airspace services (management and publication of airspace information);
c) general information services; and
d) flow services (flow & capacity management).
B.1.2 Interface Definition
WSDL (Web Services Description Language)
WSDL describes the abstract interfaces, protocol bindings and deployment details of services. It can be
considered as a complement to the UDDI standard. Understanding the relationship between WSDL and
UDDI and establishing a mapping between them allows the automatic registering of WSDL definitions in
UDDI.
10
Not all potential candidate standards are listed in this appendix.
B-2 Manual on System Wide Information Management (SWIM) Concept
In SWIM services developed by the ASP, application systems will be exposed using WSDLs during
design-time. A WSDL provided by an information provider is stored in a registry in accordance with the
registry data model to be defined. Information consumers can then search the registry and discover the
service they are seeking based on service characteristics including deployment details as provided by the
WSDL. The information consumer is then able to invoke the service during run-time.
As part of the WS-I Basic standard and a widely used mechanism to describe services (e.g. ports and
binding information), WSDL is a key enabler of the kind of technology (web services and SOA) SWIM is
implementing for seamless information exchange.
Web Feature Service (WFS)
WFS (OGC Web Feature Service, 2005) provides an interface allowing requests for geographical features
across the web using platform-independent calls. Basic WFS allows querying and retrieval of features.
Transactional WFS (WFS-T) allows creation, deletion, and updating of features.
Web Map Service (WMS)
WMS (OGC Web Map Service, 2005) provides a simple HTTP interface for requesting geo-registered map
images from one or more distributed geospatial databases. A WMS request defines the geographic
layer(s) and area of interest to be processed. The response to the request is one or more geo-registered
map images (returned as JPEG, PNG, etc.) that can be displayed in a browser application. The interface
also supports the ability to specify whether the returned images should be transparent so that layers from
multiple servers can be combined or not.
Note.— WMS 1.3 and ISO 19128 are the same documents.
B.2 Information Exchange Models and Schemas
B.2.1 Aeronautical, Meteorological, and Flight Information
Information exchange standards are the standards that are needed for domain applications to interoperate.
The more mature domains are for flight data, aeronautical, and meteorological data. air traffic management
information reference models for these domains (and other domains) have or are being developed by
international bodies. While there are many exchange standards, examples include AIXM, WXXM, and
FIXM.
AIXM
The aeronautical information exchange model (AIXM) is designed to enable the management and
distribution of aeronautical information services data in digital format. AIXM takes advantages of
established information engineering standards and supports current and future aeronautical information
system requirements. The major tenets are:
a) an exhaustive temporality model, including support for the temporary information contained
in NOTAM;
b) alignment with ISO standards for geospatial information, including the use of the geography
markup language (GML);
Appendix B. Short Description of Potential SWIM Candidates B-3
c) support for the latest ICAO and user requirements for aeronautical data including obstacles,
terminal procedures and airport mapping databases; and
d) modularity and extensibility.
FIXM
The flight information exchange model (FIXM) is a data interchange format for sharing information about
flights throughout their lifecycle. FIXM is part of a family of technology independent, harmonized and
interoperable information exchange models designed to cover the information needs of air traffic
management.
WXXM
The weather information exchange models and schema (WXCM-WXXM-WXXS) are designed to enable a
platform independent, harmonized and interoperable meteorological information exchange covering all the
needs of the air transport industry. [When the 3-tiered model (WXCM-WXXM-WXXS) is referred to as a
single entity, the term used is 'WXXM'.]
The WXCM-WXXM-WXXS takes advantages of existing and emerging information engineering standards
and supports current and future aeronautical meteorological information system requirements.
The major tenets are:
a) support for the latest ICAO and other user requirements for meteorological information by
one single representation;
b) alignment with ISO standards for geospatial information, including the use of the
geography markup language (GML);
c) alignment with OGC best practices for geospatial information, including the observation &
measurement model; and
d) modularity to support future requirements.
B.3 SWIM Infrastructure
B.3.1 Enterprise Service Management Standards
Long term standards for WS management are still evolving and are not readily available in products. Web
services manageability is defined as a set of capabilities for discovering the existence, availability, health,
performance, and usage, as well as the control and configuration of a Web service within the web services
architecture. This implies that web services can be managed using web services technologies. The
importance of a standardized management model for web services and the promise of web services as a
management integration technology is a future SWIM goal.
B-4 Manual on System Wide Information Management (SWIM) Concept
The most popular standards for monitoring and control in SWIM are likely to be the simple network
management protocol (SNMP) and java management eXtension (JMX). These are not strictly service
management standards such as WS-distributed management (WSDM). JMX only works for Java based
platforms, and SNMP does not really support management at the service layer, only at network/platform
infrastructure layer. Exchange of ESM information across organizations is also likely to be minimal unless
enough trust has been built up and is likely to be bilateral in nature.
B.3.2 Policy Standards
WS-policy defines a general-purpose framework for representing and combining statements about the
QoS properties. WS-policy is an extensible framework that can accommodate domain-specific dialects to
represent these assertions and allow the attachment of policies to arbitrary types of subjects through the
generic attachment mechanisms that WS-policy attachments define. One such example is the use of WS-
policy to implement WS-security policy as defined below. WS-policy (version 1.5) was released as a W3C
recommended standard in September 2007 though some vendor implementations have been available
since.
B.3.3 Security Standards
Security standards are still an area of discussion and evaluation. There seems to be agreement that the
two standards that are reasonably mature are WS-security and the secure sockets layer (SSL). A number
of supplemental security standards such as OASIS security assertion markup language (SAML) are under
consideration.
Agreements on security standards among organizations are more likely to be bilateral in practice and
require memoranda of agreement. Organizations develop a trust level slowly among their respective
communities of interest (stakeholders that they work with frequently). It is likely that each organization will
decide to expose an agreed upon set of information services at their boundary protection gateways.
WS-Security 1.1
The OASIS standard WS-security 1.1 is recommended to provide secure SOAP message exchange from
message endpoint to message endpoint. The primary mechanism for implementing WS-Security is the
incorporation of enhancements to the SOAP header and body.
The WS-I basic security profile makes additional recommendations for the interoperability of services
defined by WS-Security; it also makes additional recommendations intended to improve the security of
web services.
Secure Sockets Layer (SSL) Protocol v3.0
SSL and its successor TLS were developed to address transport level shortcomings in HTTP. SSL is the
commercially available implementation of the TLS standard. SSL and TLS are encryption technologies that
can be used to provide secure transactions. SSL and TLS can provide for both server-only or server and
client (mutual) authentication. SSL uses symmetric encryption for private connections and asymmetric
encryption for peer authentication. It also uses a message authentication code (MAC) for message
integrity checking.
Appendix B. Short Description of Potential SWIM Candidates B-5
While the use of transport level security may be simpler to deploy than WS-Security mechanisms, it can
only be used for securing information between two web services, or for point-to-point connections without
intermediaries.
B.3.4 Reliability Standards
WS-Reliable Messaging
WS-reliable messaging is a standard for a reliable messaging architecture for web services.
While the use of a standard like WS-reliable messaging will allow the development of robust and reliable
web services as well as ensure transport independence, its use in early implementations of SWIM should
be predicated on the fact that it has matured. At this time the WS-reliable messaging standard has been
approved by OASIS but needs to be evaluated for maturity for use in SWIM.
This leads to the consideration of more traditional mechanisms like JMS which is recommended for use in
SWIM.
WS-RM Policy
This standard may be considered for use in later SWIM implementations for distributing declarative policy
regarding use of reliable messaging.
B.3.5 Data Representation Standards
SWIM standards for data representation consist of XML and XML Schema Definition (XSD). XML provides
a standardized method for describing data structures and data types while XSD formalizes how elements
are described in an XML document.
Extensible stylesheet language transformations (XSLT) is a SWIM standard for XML data transformation.
XML path language (XPath) and XML query language (XQuery) are SWIM standards for querying for XML
data via web services.
XML is a universally accepted standard way of structuring data that is a basis for how data is represented
in web services. XSD, XSLT, XPath, and XQuery are all standards/tools which were created to facilitate
the use of XML and are widely used.
The geography markup language (GML) is the XML grammar defined by the open geospatial consortium
(OGC) to express geographical features. GML serves as a modeling language for geographic systems as
well as an open interchange format for geographic transactions on the internet.
B-6 Manual on System Wide Information Management (SWIM) Concept
B.3.6 Messaging Standards
SOAP
SOAP is the messaging envelope used to exchange information between producers and consumers in
SWIM. SOAP can be transported either over HTTP or other transport mechanisms such as JMS or MQ.
SOAP is listed as a messaging standard for SWIM because it is mature and currently the most widely used
protocol for SOA implementations. In this context, a standard is mature if multiple commercial vendors
provide software implementations conforming to this standard.
However, when necessary, due to performance, security or other concerns, other approaches may be
used in SWIM. The REpresentational state transfer (REST) architectural style, using Plain old XML is also
possible. REST may work well across organizational boundaries because of its simplicity.
JMS
JMS is an application program interface (API) for accessing enterprise messaging systems. It is part of the
java platform, enterprise edition (Java EE). JMS defines a common enterprise messaging API that is
designed to be easily and efficiently supported by a wide range of enterprise messaging products such as
IBM websphere MQ. JMS in conjunction with a product like IBM websphere MQ (via a Provider) can
provide a reliable transport for SOAP. It can also support the publish/subscribe MEP. In case WS-
notification and WS-reliable messaging are determined to be not suitable for SWIM, JMS is a viable
alternative until the WS* standards mature.
Note.— JMS is only an API standard; it does not provide an "on the wire" standard for machine-to-machine
message transfer. Interoperability of two communicators that use different JMS implementations may be
accommodated by supporting multiple message queueing (MQ) protocols. There is also an on-going effort
to define a common “on the wire” standard.
Data Distribution Service for Real-Time Systems (DDS)
DDS is the first open international middleware
11
standard directly addressing publish-subscribe
communications for real-time and embedded systems. It is published by the object management group
(OMG) DDS portal. There are at least two commercial implementations available.
DDS introduces a virtual global data space where applications can share information by simply reading
and writing data-objects addressed by means of an application-defined name (Topic) and a key. DDS
features fine and extensive control of quality of service (QoS) parameters, including reliability, bandwidth,
delivery deadlines, and resource limits. DDS also supports the construction of local object models on top of
the global data space. The current DDS specification is version 1.2 and the current DDS interoperability
wire protocol specification (DDS-RTPS) is version 2.1.
11
Middleware is software that serves to "glue together" or mediate between two
separate and often already existing messaging standards (or implementations of an API such as JMS).
Appendix B. Short Description of Potential SWIM Candidates B-7
B.3.7 Transport Standards
Hyper Text Transfer Protocol (HTTP)
HTTP is a widely available application layer transport mechanism. HTTP is listed as a transport protocol
because of its traditional role as an application transport mechanism for SOAP. It is an ideal application
transport for interactions that don’t require reliability. Once WS-reliable messaging matures, it is expected
that SOAP using WS-reliable messages can be transmitted reliably over HTTP.
Java Messaging Service (JMS)
JMS was already described while considering the messaging layer. Because JMS is an API it can be
considered at either layer.
Proprietary Message Oriented Middleware
IBM websphere MQ, Oracle AQ, and sonicMQ are examples of proprietary message oriented middleware
(MOM) that provide a reliable message transport infrastructure using message queueing. MQ products can
be used as standardized products within SWIM not only because of their support for reliable messaging,
but also because of their maturity and wide spread use in enterprises as well as its support for various
legacy host systems. MQ also has the capability to support publish/subscribe messaging as well as
reliable messaging.
MOM products and suitable bridges can ensure interoperability among communicators using different JMS
implementations.
B.3.8 Service Registry Standards
UDDI (Universal Description, Discovery, and Integration)
UDDI is a standard interface to a directory used for storing information about web services including web
services interfaces. During design time developers are able to find WSDL files and create appropriate
consuming applications based on those files to consume discovered services. Run time service exposure
will be performed via a standard UDDI publishing service interface, defined as part of the UDDI
Specification.
Despite some concerns with the complexity of UDDI, it is supported by many COTS products, and is used
by many organizations. It is an established standard (also part of WS-I basic profile). The adoption of a
single standard for data registry access and retrieval is important for SWIM. Other standards like electronic
business using XML (ebXML) could be used in conjunction with UDDI.
C-1
Appendix C
MEETING THE ATM SYSTEM REQUIREMENTS
A summary of information management and services requirements identified in Section 2.2.1 of the
Manual on ATM System Requirements (Doc 9882) is provided below. Notes explaining how this
SWIM document addresses these requirements are also provided. The requirement number,
referenced in Doc 9882, is in brackets.
The explicit requirements on information management are described as follows:
a) implement system wide information management [R70];
(i) this document provides guidelines for this implementation.
b) establish information exchange protocols and procedures to ensure that appropriate
performance can be achieved within the agreed rules [R12];
(ii) this document describes the representative standards for exchange protocols
and describes the applicable procedures.
c) be capable of collecting and integrating information from diverse sources to produce
a complete and accurate view of the ATM system state [R76];
(iii) operational use of SWIM as described in Section 3 indicates how SWIM is
expected to accomplish this.
d) support a reduction in transactional friction for transmission of information across
systems [R78].
(iv) ensured through provision of interoperable information standards at all layers of
the SWIM framework.
The following characteristics ensure that the requirements are met:
a) provide to the ATM community accredited, quality-assured, and timely information
meeting the identified standards of performance, including quality of services [R74];
b) provide information systems that identify the nature of the information in terms of
timeframe - historical, current, or planned [R75]; and
c) ensure that a relevant validity period of ATM system information is evident to the user
of that information [R79].
The following requirements are met through the exchange of information (via SWIM) falling within
various domains (aeronautical, flight, and meteorological):
a) provide a global, common aviation data standard and reference system to allow
fusion and conflation and provide comprehensive situational awareness and conflict
management [R06];
C-2 Manual on System Wide Information Management (SWIM) Concept
b) assemble the best possible integrated picture of the historical, real-time, and planned
or foreseen future state of the ATM system situation and relevant, quality-assured
and accredited information shall be made available to the ATM system [R123];
c) ensure that the airspace user makes available relevant, operational information to the
ATM system [R07];
d) use relevant, airspace user operational information to optimize flight operation
management [R08];
e) use relevant data to dynamically optimize 4-D trajectory planning and operation
[R09];
f) provide the status of ATM system resources [R13];
g) make available to the ATM system flight parameters and aircraft performance
characteristics [R31];
h) establish standards for meteorological model accuracy and resolution and agree
performance requirements [R157];
i) provide timely access to all relevant meteorological information [R164]; and
j) utilize meteorological data, and information derived from it, to assist in analysis and
evaluation of agreed environmental performance targets [R96].
— END —