Mathematics: analysis and
approaches
Higher level and Standard level
Specimen papers 1, 2 and 3
First examinations in 2021
CONTENTS
Mathematics: analysis and approaches higher level
paper 1 specimen paper
M
athematics: analysis and approaches higher level
paper 1 markscheme
M
athematics: analysis and approaches higher level
paper 2 specimen paper
M
athematics: analysis and approaches higher level
paper 2 markscheme
M
athematics: analysis and approaches higher level
paper 3 specimen paper
Mathematics: analysis and approaches higher level
paper 3 markscheme
M
athematics: analysis and approaches standard level
paper 1 specimen paper
M
athematics: analysis and approaches standard level
paper 1 markscheme
M
athematics: analysis and approaches standard level
paper 2 specimen paper
M
athematics: analysis and approaches standard level
paper 2 markscheme
Candidate session number
Mathematics: analysis and approaches
Higher level
Paper 1
13 pages
Specimen paper
2 hours
16EP01
Instructions to candidates
Write your session number in the boxes above.
Do not open this examination paper until instructed to do so.
You are not permitted access to any calculator for this paper.
Section A: answer all questions. Answers must be written within the answer boxes provided.
Section B: answer all questions in the answer booklet provided. Fill in your session number
on the front of the answer booklet, and attach it to this examination paper and your
cover sheet using the tag provided.
Unless otherwise stated in the question, all numerical answers should be given exactly or
correct to three signicant gures.
A clean copy of the mathematics: analysis and approaches formula booklet is required for
this paper.
The maximum mark for this examination paper is [110 marks].
© International Baccalaureate Organization 2019
SPEC/5/MATAA/HP1/ENG/TZ0/XX
Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Where an answer is incorrect, some marks may be given
for a correct method, provided this is shown by written working. You are therefore advised to show all
working.
Section A
Answer all questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.
1. [Maximum mark: 5]
Let A and B be events such that P (A) = 0.5 , P (B) = 0.4 and P (A B) = 0.6 .
Find P (A | B) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16EP02
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 2 –
2. [Maximum mark: 5]
(a) Show that (2n - 1)
2
+ (2n + 1)
2
= 8n
2
+ 2 , where n . [2]
(b) Hence, or otherwise, prove that the sum of the squares of any two consecutive odd
integers is even. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
16EP03
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 3 –
3. [Maximum mark: 5]
Let
=
+
fx
x
x
()
8
21
2
. Given that f (0) = 5, nd  f (x) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16EP04
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 4 –
4. [Maximum mark: 5]
The following diagram shows the graph of y = f (x) . The graph has a horizontal asymptote
at y = -1 . The graph crosses the x-axis at x = -1 and x = 1 , and the y-axis at y = 2 .
y
x
1
1
1
1
2
23
4 2
2
3 4
3
4
y = f (x)
On the following set of axes, sketch the graph of y =
[
f (x)
]
2
+ 1 , clearly showing any
asymptotes with their equations and the coordinates of any local maxima or minima.
1
1
1 0
1
23
4 2
2
3 4
3
4
5
6
Turn over
16EP05
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 5 –
5. [Maximum mark: 5]
The functions f and g are dened such that 
fx
x
()=
+
3
4
and g (x) = 8x + 5 .
(a) Show that ( g f )(x) = 2x + 11 . [2]
(b) Given that ( g f )
-1
(a) = 4, nd the value of  a . [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16EP06
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 6 –
6. [Maximum mark: 8]
(a) Show that
log(cos)logcos
93
22
22xx
+= +
. [3]
(b) Hence or otherwise solve log
3
(2 sin x) = log
9
(cos 2x + 2) for
0
2
<<
x
. [5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
16EP07
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 7 –
7. [Maximum mark: 7]
A continuous random variable X has the probability density function f given by
fx
xx
x
()
sin,
,
=
≤≤
36 6
06
0
otherwise
.
Find P (0 X 3).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16EP08
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 8 –
8. [Maximum mark: 7]
The plane
П
has the Cartesian equation 2x + y + 2z = 3 .
The line L has the vector equation
r =−
+−
3
5
1
1
2
µ
p
,
µ
, p . The acute angle between
the line L and the plane
П
is 30
.
Find the possible values of p .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
16EP09
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 9 –
9. [Maximum mark: 8]
The function f  is dened by  f (x) = e
2x
- 6e
x
+ 5 , x , x a . The graph of y = f (x) is
shown in the following diagram.
x
y
2
0
2
2 2
4
4
5
(a) Find the largest value of a such that f has an inverse function. [3]
(b) For this value of a, nd an expression for  f
-1
(x) , stating its domain. [5]
(This question continues on the following page)
16EP10
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 10 –
(Question 9 continued)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
16EP11
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 11 –
Do not write solutions on this page.
Section B
Answer all questions in the answer booklet provided. Please start each question on a new page.
10. [Maximum mark: 16]
Let
fx
x
kx
()
ln
=
5
where x > 0 , k
+
.
(a) Show that
=
fx
x
kx
()
ln
15
2
. [3]
The graph of f has exactly one maximum point P .
(b) Find the x-coordinate of P . [3]
The second derivative of f is given by
′′
=
fx
x
kx
()
ln25 3
3
. The graph of f has exactly one
point of inexion  Q .
(c) Show that the x-coordinate of Q is
1
5
3
2
e
. [3]
The region R is enclosed by the graph of f , the x-axis, and the vertical lines through the
maximum point P  and the point of inexion  Q .
y
x
R
P
Q
(d) Given that the area of R is 3 , nd the value of  k . [7]
16EP12
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 12 –
Do not write solutions on this page.
11. [Maximum mark: 18]
(a) Express
−+
33
i
in the form re
iθ
, where r > 0 and -π < θ π . [5]
Let the roots of the equation
z
3
33
=− + i
be u , v and w .
(b) Find u , v and w expressing your answers in the form re
iθ
, where r > 0 and -π < θ π . [5]
On an Argand diagram, u , v and w are represented by the points U , V and W respectively.
(c) Find the area of triangle UVW . [4]
(d) By considering the sum of the roots u , v and w , show that
co
scos cos
5
18
7
18
17
18
0
++ =
. [4]
12. [Maximum mark: 21]
The function f  is dened by  f (x) = e
sin x
.
(a) Find the rst two derivatives of  f (x) and hence nd the Maclaurin series for  f (x) up to
and including the x
2
term. [8]
(b) Show that the coecient of  x
3
in the Maclaurin series for f (x) is zero. [4]
(c) Using the Maclaurin series for arctan x and e
3x
- 1, nd the Maclaurin series 
for arctan
(
e
3x
- 1
)
up to and including the x
3
term. [6]
(d) Hence, or otherwise, nd 
lim
()
arctan
x
x
fx
()
0
3
1
1e
. [3]
16EP13
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 13 –
Please do not write on this page.
Answers written on this page
will not be marked.
16EP14
Please do not write on this page.
Answers written on this page
will not be marked.
16EP15
Please do not write on this page.
Answers written on this page
will not be marked.
16EP16
SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
16 pages
Markscheme
Specimen paper
Mathematics:
analysis and approaches
Higher level
Paper 1
– 2 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Instructions to Examiners
Abbreviations
M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
Using the markscheme
1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.
2 Method and Answer/Accuracy marks
Do not automatically award full marks for a correct answer; all working must be checked, and
marks awarded according to the markscheme.
It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding
M mark(s), if any.
Where M and A marks are noted on the same line, e.g. M1A1, this usually means M1 for an
attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the
correct values.
Where there are two or more A marks on the same line, they may be awarded independently;
so if the first value is incorrect, but the next two are correct, award A0A1A1.
Where the markscheme specifies M2, A2
, etc., do not split the marks, unless there is a note.
Once a correct answer to a question or part-question is seen, ignore further correct working.
However, if further working indicates a lack of mathematical understanding do not award the final
A1. An exception to this may be in numerical answers, where a correct exact value is followed by
an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part,
and correct working shown, award FT marks as appropriate but do not award the final A1 in that
part.
Examples
Correct answer seen Further working seen Action
1.
82
5.65685...
(incorrect decimal value)
Award the final A1
(ignore the further working)
2.
1
sin 4
4
x
sin
x
Do not award the final A1
3.
log logab
log ( )ab
Do not award the final A1
– 3 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
3 Implied marks
Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if
implied in subsequent working.
Normally the correct work is seen or implied in the next line.
Marks without brackets can only be awarded for work that is seen.
4 Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is
used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be
working present and not just a final answer based on an incorrect answer to a previous part.
However, if the only marks awarded in a subpart are for the answer (i.e. there is no working
expected), then FT marks should be awarded if appropriate.
Within a question part, once an error is made, no further A marks can be awarded for work
which uses the error, but M marks may be awarded if appropriate.
If the question becomes much simpler because of an error then use discretion to award fewer
FT marks.
If the error leads to an inappropriate value (e.g. probability greater than 1, use of
1r
for the
sum of an infinite GP,
sin 1.5
, non integer value where integer required), do not award the
mark(s) for the final answer(s).
The markscheme may use the word “their” in a description, to indicate that candidates may be
using an incorrect value.
Exceptions to this rule will be explicitly noted on the markscheme.
If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s),
award marks as appropriate, unless the question says hence. It is often possible to use a
different approach in subsequent parts that does not depend on the answer to previous parts.
5 Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR
penalty of 1 mark to that question
If the question becomes much simpler because of the MR, then use discretion to award
fewer marks.
If the MR leads to an inappropriate value (e.g. probability greater than
1,
sin 1.5
, non-integer
value where integer required), do not award the mark(s) for the final answer(s).
Miscopying of candidates’ own work does not constitute a misread, it is an error.
The MR penalty can only be applied when work is seen. For calculator questions with no
working and incorrect answers, examiners should not infer that values were read incorrectly.
– 4 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
6 Alternative methods
Alternative methods for complete questions are indicated by METHOD 1,
METHOD 2, etc.
Alternative solutions for part-questions are indicated by EITHER . . . OR.
7 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.
As this is an international examination, accept all alternative forms of notation.
In the markscheme, equivalent numerical and algebraic forms will generally be written in
brackets immediately following the answer.
In the markscheme, simplified answers, (which candidates often do not write in examinations),
will generally appear in brackets. Marks should be awarded for either the form preceding the
bracket or the form in brackets (if it is seen).
8 Accuracy of Answers
If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the
required accuracy. There are two types of accuracy errors, and the final answer mark should not be
awarded if these errors occur.
Rounding errors: only applies to final answers not to intermediate steps.
Level of accuracy: when this is not specified in the question the general rule applies to final
answers: unless otherwise stated in the question all numerical answers must be given exactly or
correct to three significant figures.
9 Calculators
No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no
grade awarded. If you see work that suggests a candidate has used any calculator, please follow
the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.
Candidates will sometimes use methods other than those in the markscheme. Unless the question
specifies a method, other correct methods should be marked in line with the markscheme
– 5 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Section A
1. attempt to substitute into

PPPP
A
BABAB
(M1)
Note: Accept use of Venn diagram or other valid method.
0.6 0.5 0.4 P( )
A
B
(A1)

P0.3AB
(seen anywhere) A1
attempt to substitute into


P
P|
P
A
B
AB
B
(M1)
0.3
0.4
P|
A
B
3
0.75
4




A1
Total [5 marks]
2. (a) attempting to expand the LHS (M1)

22
LHS 4 4 1 4 4 1nn nn A1
2
82RHSn AG
[2 marks]
(b) METHOD 1
recognition that
21n
and
21n
represent two consecutive odd
integers (for all odd integers
n
) R1

22
82241nn A1
valid reason eg divisible by
2 (2 is a factor) R1
so the sum of the squares of any two consecutive odd integers is even AG
[3 marks]
METHOD 2
recognition, eg that
n
and
2n
represent two consecutive odd integers
(for
n
) R1


2
22
22 22nn n n
A1
valid reason eg divisible by
2 (2 is a factor) R1
so the sum of the squares of any two consecutive odd integers
is even AG
[3 marks]
Total [5 marks]
– 6 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
3. attempt to integrate (M1)
2
d
21 4
d
u
ux x
x

2
82
dd
21
x
x
u
u
x

(A1)
EITHER

4 uC
A1
OR

2
42 1
x
C A1
THEN
correct substitution into their integrated function (must have
C
) (M1)
54 1CC

2
42 11fx x A1
Total [5 marks]
– 7 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
4.
no
y values below 1 A1
horizontal asymptote at
2y
with curve approaching from below as
x

A1

1,1
local minima A1

0,5 local maximum A1
smooth curve and smooth stationary points A1
Total [5 marks]
5. (a) attempt to form composition M1
correct substitution
33
85
44
xx
g





A1

211gf x x
AG
[2 marks]
(b) attempt to substitute 4 (seen anywhere) (M1)
correct equation
2411a 
(A1)
19a
A1
[3 marks]
Total [5 marks]
– 8 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
6. (a) attempting to use the change of base rule M1
3
9
3
log (cos 2 2)
log (cos 2 2)
log 9
x
x

A1
3
1
log (cos 2 2)
2
x A1
3
log cos 2 2x AG
[3 marks]
(b)
33
log (2sin ) log cos 2 2xx
2sin cos2 2xx
M1
2
4sin cos2 2xx (or equivalent) A1
use of
2
cos 2 1 2sin
x
x (M1)
2
6sin 3x

1
sin
2
x 
A1
π
4
x A1
Note: Award A0 if solutions other than
π
4
x are included.
[5 marks]
Total [8 marks]
– 9 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
7. attempting integration by parts, eg
ππ π 6π
,d d ,d sin d , cos
36 36 6 π 6
x
xx
uuxv xv
 

 
 
(M1)

3
3
0
0
π6 π 6 π
P0 3 cos cos d
36 π 6 π 6
xx x
X
x


 


 


 


(or equivalent) A1A1
Note: Award A1 for a correct
uv
and A1 for a correct dvu
.
attempting to substitute limits M1
3
0
π6 π
cos 0
36 π 6
xx






(A1)
so

3
0
P0 3 sin
π6
x
X







(or equivalent) A1
1
π
A1
Total [7 marks]
8. recognition that the angle between the normal and the line is
60
(seen anywhere) R1
attempt to use the formula for the scalar product M1
2
21
12
2
cos 60
914
p
p







A1
2
2
1
2
35
p
p
A1
2
35 4
p
p
attempt to square both sides M1
222
95 16 7 45ppp
5
3
7
p 
(or equivalent) A1A1
Total [7 marks]
– 10 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
9. (a) attempt to differentiate and set equal to zero M1
2
( ) 2e 6e 2e (e 3) 0
xx xx
fx

A1
minimum at
ln 3x
ln 3a
A1
[3 marks]
(b)
Note: Interchanging
x
and
y
can be done at any stage.

2
e3 4
x
y 
(M1)
e3 4
x
y
A1
as
ln 3x
,

ln 3 4xy
R1
so


1
ln 3 4fx x

A1
domain of
1
f
is
,4 5xx
A1
[5 marks]
Total [8 marks]
– 11 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Section B
10. (a) attempt to use quotient rule (M1)
correct substitution into quotient rule


2
1
5ln5
5
kx k x
x
fx
kx



(or equivalent) A1

22
ln 5
,
kk x
k
kx

A1
2
1ln5
x
kx
AG
[3 marks]
(b)

0fx
M1
2
1ln5
0
x
kx
ln 5 1
x
(A1)
e
5
x
A1
[3 marks]
(c)

0fx

M1
3
2ln5 3
0
x
kx
3
ln 5
2
x
A1
3
2
5ex
A1
so the point of inflexion occurs at
3
2
1
e
5
x
AG
[3 marks]
continued…
– 12 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Question 10 continued
(d) attempt to integrate (M1)
d1
ln 5
d
u
ux
x
x

ln 5 1
d d
x
x
uu
kx k

(A1)
EITHER
2
2
u
k
A1
so
3
3
2
2
2
1
1
1
d
2
u
uu
kk



A1
OR

2
ln 5
2
x
k
A1
so

3
3
2
2
1
1
e
e
2
5
5
e
e
5
5
ln 5
ln 5
d
2
x
x
x
kx k




A1
THEN
19
1
24k




5
8k
A1
setting their expression for area equal to
3 M1
5
3
8k
5
24
k
A1
[7 marks]
Total [16 marks]
– 13 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
11. (a) attempt to find modulus (M1)
23 12r 
A1
attempt to find argument in the correct quadrant (M1)
3
πarctan
3





A1
6
A1
5πi 5πi
66
33i12e 23e

 


[5 marks]
(b) attempt to find a root using de Moivre’s theorem M1
15πi
618
12 e
A1
attempt to find further two roots by adding and subtracting
3
to
the argument M1
17πi
618
12 e
A1
117πi
618
12 e A1
Note: Ignore labels for
,uv
and
w
at this stage.
[5 marks]
continued…
– 14 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Question 11 continued
(c) METHOD 1
attempting to find the total area of (congruent) triangles
UOV, VOW
and
UOW
M1
11
66
12π
Area 3 12 12 sin
23






A1A1
Note: Award A1 for
11
66
12 12



and A1 for
sin
3
.
1
3
33
12
4



(or equivalent) A1
[4 marks]
METHOD 2
22
11 11
2
66 66
UV 12 12 2 12 12 cos
3
 

 
 
(or equivalent) A1
1
6
UV 3 12



(or equivalent) A1
attempting to find the area of
UVW
using
1
Area UV VW sin
2

for example M1
11
66
Area 3 12 3 12 sin
23




1
3
33
12
4



(or equivalent) A1
[4 marks]
(d)
0uvw
R1
1
6
7π 7π 17π 17π
12 cos isin cos i sin cos isin 0
18 18 18 18 18 18

 
 
 

 

A1
consideration of real parts M1
1
6
5π 1
12 cos cos cos 0
18 18 18







cos cos
18 18




explicitly stated A1
7π 17π
cos cos cos 0
18 18 18

AG
[4 marks]
Total [18 marks]
– 15 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
12. (a) attempting to use the chain rule to find the first derivative M1
sin
cos e
x
fx x
A1
attempting to use the product rule to find the second derivative M1


sin 2
ecos sin
x
f
xxx


(or equivalent) A1
attempting to find

0f
,

0f
and
0f

M1
01f
;

sin 0
0cos0e 1f

;


sin 0 2
0e cos0sin01f


A1
substitution into the Maclaurin formula
2
( ) (0) (0) (0) ...
2!
x
fx f xf f


M1
so the Maclaurin series for

f
x
up to and including the
2
x
term is
2
1
2
x
x
A1
[8 marks]
(b) METHOD 1
attempting to differentiate
()
f
x

M1



sin 2 sin
cos e cos sin cos e 2sin 1
xx
fx x x x x x


(or equivalent) A2
substituting
0x
into their

f
x

M1

01101010f


so the coefficient of
3
x
in the Maclaurin series for

f
x is zero AG
METHOD 2
substituting
sin
x
into the Maclaurin series for e
x
(M1)
23
sin
sin sin
e 1 sin ...
2! 3!
x
xx
x
substituting Maclaurin series for
sin
x
M1
23
33
3
sin
... ...
3! 3!
e 1 ... ...
3! 2! 3!
x
xx
xx
x
x

 






A1
coefficient of
3
x
is
11
0
3! 3!
 A1
so the coefficient of
3
x
in the Maclaurin series for

f
x
is zero AG
[4 marks]
continued…
– 16 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Question 12 continued
(c) substituting
3
x
into the Maclaurin series for e
x
M1
 
23
3
33
e 1 3 ...
2! 3!
x
xx
x
A1
substituting
3
e1
x
into the Maclaurin series for
arctan
x
M1



35
33
33
e1 e1
arctan e 1 e 1 ...
35
xx
xx


 
 
3
23
23
33
3
2! 3!
33
3 ...
2! 3! 3
xx
x
xx
x










A1
selecting correct terms from above M1
  
23 3
33 3
3
2! 3! 3
x
xx
x





23
99
3
22
x
x
x
A1
[6 marks]
(d) METHOD 1
substitution of their series M1
2
2
0
...
2
lim
9
3 ...
2
x
x
x
x
x


A1
0
1...
2
lim
9
3...
2
x
x
x


1
3
A1
METHOD 2
use of l’Hôpital’s rule M1

sin
3
0
2
3
cos e
lim
3e
1e 1
x
x
x
x
x

(or equivalent) A1
1
3
A1
[3 marks]
Total [21 marks]
12EP01
Candidate session number
Mathematics: analysis and approaches
Higher level
Paper 2
12 pages
Specimen
2 hours
Instructions to candidates
Write your session number in the boxes above.
Do not open this examination paper until instructed to do so.
A graphic display calculator is required for this paper.
Section A: answer all questions. Answers must be written within the answer boxes provided.
Section B: answer all questions in the answer booklet provided. Fill in your session number
on the front of the answer booklet, and attach it to this examination paper and your
cover sheet using the tag provided.
Unless otherwise stated in the question, all numerical answers should be given exactly or
correct to three signicant gures.
A clean copy of the mathematics: analysis and approaches formula booklet is required for
this paper.
The maximum mark for this examination paper is [110 marks].
© International Baccalaureate Organization 2019
SPEC/5/MATAA/HP2/ENG/TZ0/XX
Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Solutions found from a graphic display calculator should be
supported by suitable working. For example, if graphs are used to nd a solution, you should sketch
these as part of your answer. Where an answer is incorrect, some marks may be given for a correct
method, provided this is shown by written working. You are therefore advised to show all working.
Section A
Answer all questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.
1. [Maximum mark: 6]
The following diagram shows part of a circle with centre O and radius 4 cm .
O
B
A
θ
4 cm
5 cm
Chord AB has a length of 5 cm and AÔB = θ .
(a) Find the value of θ , giving your answer in radians. [3]
(b) Find the area of the shaded region. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP02
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 2 –
2. [Maximum mark: 6]
On 1st January 2020, Laurie invests $P in an account that pays a nominal annual interest
rate of 5.5 % , compounded quarterly.
The amount of money in Laurie’s account at the end of each year follows a geometric
sequence with common ratio, r .
(a) Find the value of r , giving your answer to four signicant gures. [3]
Laurie makes no further deposits to or withdrawals from the account.
(b) Find the year in which the amount of money in Laurie’s account will become double the
amount she invested. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP03
Turn over
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 3 –
3. [Maximum mark: 6]
A six-sided biased die is weighted in such a way that the probability of obtaining a “six” is
7
10
.
The die is tossed ve times. Find the probability of obtaining
(a) at most three “sixes”. [3]
(b) the third “six” on the fth toss. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP04
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 4 –
4. [Maximum mark: 7]
The following table below shows the marks scored by seven students on two dierent
mathematics tests.
Test 1 (x)
15 23 25 30 34 34 40
Test 2 ( y)
20 26 27 32 35 37 35
Let L
1
be the regression line of x on y . The equation of the line L
1
can be written in the
form x =ay + b .
(a) Find the value of a and the value of b . [2]
Let L
2
be the regression line of y on x . The lines L
1
and L
2
pass through the same point
with coordinates ( p , q) .
(b) Find the value of p and the value of q . [3]
(c) Jennifer was absent for the rst test but scored 29 marks on the second test. Use an
appropriate regression equation to estimate Jennifer’s mark on the rst test. [2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP05
Turn over
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 5 –
5. [Maximum mark: 7]
The displacement, in centimetres, of a particle from an origin, O, at time t seconds, is given
by s (t) = t
2
cos t+2t sin t , 0 t 5 .
(a) Find the maximum distance of the particle from O. [3]
(b) Find the acceleration of the particle at the instant it rst changes direction. [4]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP06
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 6 –
6. [Maximum mark: 6]
In a city, the number of passengers, X , who ride in a taxi has the following probability distribution.
x
1 2 3 4 5
P (X = x)
0.60 0.30 0.03 0.05 0.02
After the opening of a new highway that charges a toll, a taxi company introduces a charge
for passengers who use the highway. The charge is $ 2.40 per taxi plus $ 1.20 per passenger.
Let T represent the amount, in dollars, that is charged by the taxi company per ride.
(a) Find E (T ) . [4]
(b) Given that Var (X ) = 0.8419 , nd Var (T ) . [2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP07
Turn over
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 7 –
7. [Maximum mark: 5]
Two ships, A and B , are observed from an origin O . Relative to O , their position vectors at
time t hours after midday are given by
r
A
=
+
4
3
5
8
t
r
B
=
+
7
3
0
12
t
where distances are measured in kilometres.
Find the minimum distance between the two ships.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP08
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 8 –
8. [Maximum mark: 7]
The complex numbers w and z satisfy the equations
w
z
= 2i
z
- 3w = 5 + 5i .
Find w and z in the form a + bi where a , b .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP09
Turn over
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 9 –
9. [Maximum mark: 5]
Consider the graphs of
y
x
x
=
2
3
and y = m (x + 3) , m .
Find the set of values for m such that the two graphs have no intersection points.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP10
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 10 –
Do not write solutions on this page.
Section B
Answer all questions in the answer booklet provided. Please start each question on a new page.
10. [Maximum mark: 15]
The length, X mm , of a certain species of seashell is normally distributed with mean 25 and
variance, σ
2
.
The probability that X is less than 24.15 is 0.1446 .
(a) Find P (24.15 < X < 25) . [2]
(b) (i) Find σ , the standard deviation of X .
(ii) Hence, nd the probability that a seashell selected at random has a length
greater than 26 mm . [5]
A random sample of 10 seashells is collected on a beach. Let Y represent the number of
seashells with lengths greater than 26 mm .
(c) Find E (Y ) . [3]
(d) Find the probability that exactly three of these seashells have a length greater
than 26 mm . [2]
A seashell selected at random has a length less than 26 mm .
(e) Find the probability that its length is between 24.15 mm and 25 mm . [3]
12EP11
Turn over
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 11 –
Do not write solutions on this page.
11. [Maximum mark: 21]
A large tank initially contains pure water. Water containing salt begins to ow into the tank
The solution is kept uniform by stirring and leaves the tank through an outlet at its base.
Let x grams represent the amount of salt in the tank and let t minutes represent the time
since the salt water began owing into the tank.
The rate of change of the amount of salt in the tank,
d
d
x
t
, is described by the dierential
equation
d
d
e
x
t
x
t
t
=−
+
10
1
4
.
(a) Show that t + 1 is an integrating factor for this dierential equation. [2]
(b) Hence, by solving this dierential equation, show that
xt
t
t
t
()
()
=
−+
+
200 40 5
1
4
e
. [8]
(c) Sketch the graph of x versus t for 0 t 60 and hence nd the maximum amount of
salt in the tank and the value of t at which this occurs. [5]
(d) Find the value of t at which the amount of salt in the tank is decreasing most rapidly. [2]
The rate of change of the amount of salt leaving the tank is equal to
x
t + 1
.
(e) Find the amount of salt that left the tank during the rst 60 minutes. [4]
12. [Maximum mark: 19]
(a) Show that
cot
tan
tan
2
1
2
2
θ
θ
θ
=
. [1]
(b) Verify that x = tan θ and x =- cot θ satisfy the equation x
2
+ (2 cot 2θ) x - 1= 0 . [7]
(c) Hence, or otherwise, show that the exact value of
ta
n
12
23
=
. [5]
(d) Using the results from parts (b) and (c) nd the exact value of
tanc
ot
24 24
.
Give your answer in the form
ab+ 3
where a , b . [6]
12EP12
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 12 –
SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
16 pages
Markscheme
Specimen paper
Mathematics:
analysis and approaches
Higher level
Paper 2
– 2 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
Instructions to Examiners
Abbreviations
M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
Using the markscheme
1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.
2 Method and Answer/Accuracy marks
Do not automatically award full marks for a correct answer; all working must be checked, and
marks awarded according to the markscheme.
It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding
M mark(s), if any.
Where M and A marks are noted on the same line, e.g. M1A1, this usually means M1 for an
attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the
correct values.
Where there are two or more A marks on the same line, they may be awarded independently;
so if the first value is incorrect, but the next two are correct, award A0A1A1.
Where the markscheme specifies M2, A2
, etc., do not split the marks, unless there is a note.
Once a correct answer to a question or part-question is seen, ignore further correct working.
However, if further working indicates a lack of mathematical understanding do not award the final
A1. An exception to this may be in numerical answers, where a correct exact value is followed by
an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part,
and correct working shown, award FT marks as appropriate but do not award the final A1 in that
part.
Examples
Correct answer seen Further working seen Action
1.
82
5.65685...
(incorrect decimal value)
Award the final A1
(ignore the further working)
2.
1
sin 4
4
x
sin
x
Do not award the final A1
3.
log logab
log ( )ab
Do not award the final A1
– 3 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
3 Implied marks
Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if
implied in subsequent working.
Normally the correct work is seen or implied in the next line.
Marks without brackets can only be awarded for work that is seen.
4 Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is
used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be
working present and not just a final answer based on an incorrect answer to a previous part.
However, if the only marks awarded in a subpart are for the answer (i.e. there is no working
expected), then FT marks should be awarded if appropriate.
Within a question part, once an error is made, no further A marks can be awarded for work
which uses the error, but M marks may be awarded if appropriate.
If the question becomes much simpler because of an error then use discretion to award fewer
FT marks.
If the error leads to an inappropriate value (e.g. probability greater than 1, use of
1r for the
sum of an infinite GP,
sin 1.5
, non integer value where integer required), do not award the
mark(s) for the final answer(s).
The markscheme may use the word “their” in a description, to indicate that candidates may be
using an incorrect value.
Exceptions to this rule will be explicitly noted on the markscheme.
If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s),
award marks as appropriate, unless the question says hence. It is often possible to use a
different approach in subsequent parts that does not depend on the answer to previous parts.
5 Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR
penalty of 1 mark to that question
If the question becomes much simpler because of the MR, then use discretion to award
fewer marks.
If the MR leads to an inappropriate value (e.g. probability greater than
1,
sin 1.5
, non-integer
value where integer required), do not award the mark(s) for the final answer(s).
Miscopying of candidates’ own work does not constitute a misread, it is an error.
The MR penalty can only be applied when work is seen. For calculator questions with no
working and incorrect answers, examiners should not infer that values were read incorrectly.
– 4 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
6 Alternative methods
Alternative methods for complete questions are indicated by METHOD 1,
METHOD 2, etc.
Alternative solutions for part-questions are indicated by EITHER . . . OR.
7 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.
As this is an international examination, accept all alternative forms of notation.
In the markscheme, equivalent numerical and algebraic forms will generally be written in
brackets immediately following the answer.
In the markscheme, simplified answers, (which candidates often do not write in examinations),
will generally appear in brackets. Marks should be awarded for either the form preceding the
bracket or the form in brackets (if it is seen).
8 Accuracy of Answers
If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the
required accuracy. There are two types of accuracy errors, and the final answer mark should not be
awarded if these errors occur.
Rounding errors: only applies to final answers not to intermediate steps.
Level of accuracy: when this is not specified in the question the general rule applies to final
answers: unless otherwise stated in the question all numerical answers must be given exactly or
correct to three significant figures.
9 Calculators
A GDC is required for paper 2, but calculators with symbolic manipulation features/ CAS functionality
are not allowed.
Calculator notation
The subject guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of
calculator notation in the working.
Candidates will sometimes use methods other than those in the markscheme. Unless the question
specifies a method, other correct methods should be marked in line with the markscheme
– 5 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
Section A