Mathematics: analysis and
approaches
Higher level and Standard level
Specimen papers 1, 2 and 3
First examinations in 2021
CONTENTS
Mathematics: analysis and approaches higher level
paper 1 specimen paper
M
athematics: analysis and approaches higher level
paper 1 markscheme
M
athematics: analysis and approaches higher level
paper 2 specimen paper
M
athematics: analysis and approaches higher level
paper 2 markscheme
M
athematics: analysis and approaches higher level
paper 3 specimen paper
Mathematics: analysis and approaches higher level
paper 3 markscheme
M
athematics: analysis and approaches standard level
paper 1 specimen paper
M
athematics: analysis and approaches standard level
paper 1 markscheme
M
athematics: analysis and approaches standard level
paper 2 specimen paper
M
athematics: analysis and approaches standard level
paper 2 markscheme
Candidate session number
Mathematics: analysis and approaches
Higher level
Paper 1
13 pages
Specimen paper
2 hours
16EP01
Instructions to candidates
Write your session number in the boxes above.
Do not open this examination paper until instructed to do so.
You are not permitted access to any calculator for this paper.
Section A: answer all questions. Answers must be written within the answer boxes provided.
Section B: answer all questions in the answer booklet provided. Fill in your session number
on the front of the answer booklet, and attach it to this examination paper and your
cover sheet using the tag provided.
Unless otherwise stated in the question, all numerical answers should be given exactly or
correct to three signicant gures.
A clean copy of the mathematics: analysis and approaches formula booklet is required for
this paper.
The maximum mark for this examination paper is [110 marks].
© International Baccalaureate Organization 2019
SPEC/5/MATAA/HP1/ENG/TZ0/XX
Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Where an answer is incorrect, some marks may be given
for a correct method, provided this is shown by written working. You are therefore advised to show all
working.
Section A
Answer all questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.
1. [Maximum mark: 5]
Let A and B be events such that P (A) = 0.5 , P (B) = 0.4 and P (A B) = 0.6 .
Find P (A | B) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16EP02
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 2 –
2. [Maximum mark: 5]
(a) Show that (2n - 1)
2
+ (2n + 1)
2
= 8n
2
+ 2 , where n . [2]
(b) Hence, or otherwise, prove that the sum of the squares of any two consecutive odd
integers is even. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
16EP03
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 3 –
3. [Maximum mark: 5]
Let
=
+
fx
x
x
()
8
21
2
. Given that f (0) = 5, nd  f (x) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16EP04
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 4 –
4. [Maximum mark: 5]
The following diagram shows the graph of y = f (x) . The graph has a horizontal asymptote
at y = -1 . The graph crosses the x-axis at x = -1 and x = 1 , and the y-axis at y = 2 .
y
x
1
1
1
1
2
23
4 2
2
3 4
3
4
y = f (x)
On the following set of axes, sketch the graph of y =
[
f (x)
]
2
+ 1 , clearly showing any
asymptotes with their equations and the coordinates of any local maxima or minima.
1
1
1 0
1
23
4 2
2
3 4
3
4
5
6
Turn over
16EP05
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 5 –
5. [Maximum mark: 5]
The functions f and g are dened such that 
fx
x
()=
+
3
4
and g (x) = 8x + 5 .
(a) Show that ( g f )(x) = 2x + 11 . [2]
(b) Given that ( g f )
-1
(a) = 4, nd the value of  a . [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16EP06
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 6 –
6. [Maximum mark: 8]
(a) Show that
log(cos)logcos
93
22
22xx
+= +
. [3]
(b) Hence or otherwise solve log
3
(2 sin x) = log
9
(cos 2x + 2) for
0
2
<<
x
. [5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
16EP07
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 7 –
7. [Maximum mark: 7]
A continuous random variable X has the probability density function f given by
fx
xx
x
()
sin,
,
=
≤≤
36 6
06
0
otherwise
.
Find P (0 X 3).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16EP08
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 8 –
8. [Maximum mark: 7]
The plane
П
has the Cartesian equation 2x + y + 2z = 3 .
The line L has the vector equation
r =−
+−
3
5
1
1
2
µ
p
,
µ
, p . The acute angle between
the line L and the plane
П
is 30
.
Find the possible values of p .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
16EP09
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 9 –
9. [Maximum mark: 8]
The function f  is dened by  f (x) = e
2x
- 6e
x
+ 5 , x , x a . The graph of y = f (x) is
shown in the following diagram.
x
y
2
0
2
2 2
4
4
5
(a) Find the largest value of a such that f has an inverse function. [3]
(b) For this value of a, nd an expression for  f
-1
(x) , stating its domain. [5]
(This question continues on the following page)
16EP10
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 10 –
(Question 9 continued)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
16EP11
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 11 –
Do not write solutions on this page.
Section B
Answer all questions in the answer booklet provided. Please start each question on a new page.
10. [Maximum mark: 16]
Let
fx
x
kx
()
ln
=
5
where x > 0 , k
+
.
(a) Show that
=
fx
x
kx
()
ln
15
2
. [3]
The graph of f has exactly one maximum point P .
(b) Find the x-coordinate of P . [3]
The second derivative of f is given by
′′
=
fx
x
kx
()
ln25 3
3
. The graph of f has exactly one
point of inexion  Q .
(c) Show that the x-coordinate of Q is
1
5
3
2
e
. [3]
The region R is enclosed by the graph of f , the x-axis, and the vertical lines through the
maximum point P  and the point of inexion  Q .
y
x
R
P
Q
(d) Given that the area of R is 3 , nd the value of  k . [7]
16EP12
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 12 –
Do not write solutions on this page.
11. [Maximum mark: 18]
(a) Express
−+
33
i
in the form re
iθ
, where r > 0 and -π < θ π . [5]
Let the roots of the equation
z
3
33
=− + i
be u , v and w .
(b) Find u , v and w expressing your answers in the form re
iθ
, where r > 0 and -π < θ π . [5]
On an Argand diagram, u , v and w are represented by the points U , V and W respectively.
(c) Find the area of triangle UVW . [4]
(d) By considering the sum of the roots u , v and w , show that
co
scos cos
5
18
7
18
17
18
0
++ =
. [4]
12. [Maximum mark: 21]
The function f  is dened by  f (x) = e
sin x
.
(a) Find the rst two derivatives of  f (x) and hence nd the Maclaurin series for  f (x) up to
and including the x
2
term. [8]
(b) Show that the coecient of  x
3
in the Maclaurin series for f (x) is zero. [4]
(c) Using the Maclaurin series for arctan x and e
3x
- 1, nd the Maclaurin series 
for arctan
(
e
3x
- 1
)
up to and including the x
3
term. [6]
(d) Hence, or otherwise, nd 
lim
()
arctan
x
x
fx
()
0
3
1
1e
. [3]
16EP13
SPEC/5/MATAA/HP1/ENG/TZ0/XX– 13 –
Please do not write on this page.
Answers written on this page
will not be marked.
16EP14
Please do not write on this page.
Answers written on this page
will not be marked.
16EP15
Please do not write on this page.
Answers written on this page
will not be marked.
16EP16
SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
16 pages
Markscheme
Specimen paper
Mathematics:
analysis and approaches
Higher level
Paper 1
– 2 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Instructions to Examiners
Abbreviations
M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
Using the markscheme
1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.
2 Method and Answer/Accuracy marks
Do not automatically award full marks for a correct answer; all working must be checked, and
marks awarded according to the markscheme.
It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding
M mark(s), if any.
Where M and A marks are noted on the same line, e.g. M1A1, this usually means M1 for an
attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the
correct values.
Where there are two or more A marks on the same line, they may be awarded independently;
so if the first value is incorrect, but the next two are correct, award A0A1A1.
Where the markscheme specifies M2, A2
, etc., do not split the marks, unless there is a note.
Once a correct answer to a question or part-question is seen, ignore further correct working.
However, if further working indicates a lack of mathematical understanding do not award the final
A1. An exception to this may be in numerical answers, where a correct exact value is followed by
an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part,
and correct working shown, award FT marks as appropriate but do not award the final A1 in that
part.
Examples
Correct answer seen Further working seen Action
1.
82
5.65685...
(incorrect decimal value)
Award the final A1
(ignore the further working)
2.
1
sin 4
4
x
sin
x
Do not award the final A1
3.
log logab
log ( )ab
Do not award the final A1
– 3 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
3 Implied marks
Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if
implied in subsequent working.
Normally the correct work is seen or implied in the next line.
Marks without brackets can only be awarded for work that is seen.
4 Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is
used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be
working present and not just a final answer based on an incorrect answer to a previous part.
However, if the only marks awarded in a subpart are for the answer (i.e. there is no working
expected), then FT marks should be awarded if appropriate.
Within a question part, once an error is made, no further A marks can be awarded for work
which uses the error, but M marks may be awarded if appropriate.
If the question becomes much simpler because of an error then use discretion to award fewer
FT marks.
If the error leads to an inappropriate value (e.g. probability greater than 1, use of
1r
for the
sum of an infinite GP,
sin 1.5
, non integer value where integer required), do not award the
mark(s) for the final answer(s).
The markscheme may use the word “their” in a description, to indicate that candidates may be
using an incorrect value.
Exceptions to this rule will be explicitly noted on the markscheme.
If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s),
award marks as appropriate, unless the question says hence. It is often possible to use a
different approach in subsequent parts that does not depend on the answer to previous parts.
5 Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR
penalty of 1 mark to that question
If the question becomes much simpler because of the MR, then use discretion to award
fewer marks.
If the MR leads to an inappropriate value (e.g. probability greater than
1,
sin 1.5
, non-integer
value where integer required), do not award the mark(s) for the final answer(s).
Miscopying of candidates’ own work does not constitute a misread, it is an error.
The MR penalty can only be applied when work is seen. For calculator questions with no
working and incorrect answers, examiners should not infer that values were read incorrectly.
– 4 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
6 Alternative methods
Alternative methods for complete questions are indicated by METHOD 1,
METHOD 2, etc.
Alternative solutions for part-questions are indicated by EITHER . . . OR.
7 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.
As this is an international examination, accept all alternative forms of notation.
In the markscheme, equivalent numerical and algebraic forms will generally be written in
brackets immediately following the answer.
In the markscheme, simplified answers, (which candidates often do not write in examinations),
will generally appear in brackets. Marks should be awarded for either the form preceding the
bracket or the form in brackets (if it is seen).
8 Accuracy of Answers
If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the
required accuracy. There are two types of accuracy errors, and the final answer mark should not be
awarded if these errors occur.
Rounding errors: only applies to final answers not to intermediate steps.
Level of accuracy: when this is not specified in the question the general rule applies to final
answers: unless otherwise stated in the question all numerical answers must be given exactly or
correct to three significant figures.
9 Calculators
No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no
grade awarded. If you see work that suggests a candidate has used any calculator, please follow
the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.
Candidates will sometimes use methods other than those in the markscheme. Unless the question
specifies a method, other correct methods should be marked in line with the markscheme
– 5 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Section A
1. attempt to substitute into

PPPP
A
BABAB
(M1)
Note: Accept use of Venn diagram or other valid method.
0.6 0.5 0.4 P( )
A
B
(A1)

P0.3AB
(seen anywhere) A1
attempt to substitute into


P
P|
P
A
B
AB
B
(M1)
0.3
0.4
P|
A
B
3
0.75
4




A1
Total [5 marks]
2. (a) attempting to expand the LHS (M1)

22
LHS 4 4 1 4 4 1nn nn A1
2
82RHSn AG
[2 marks]
(b) METHOD 1
recognition that
21n
and
21n
represent two consecutive odd
integers (for all odd integers
n
) R1

22
82241nn A1
valid reason eg divisible by
2 (2 is a factor) R1
so the sum of the squares of any two consecutive odd integers is even AG
[3 marks]
METHOD 2
recognition, eg that
n
and
2n
represent two consecutive odd integers
(for
n
) R1


2
22
22 22nn n n
A1
valid reason eg divisible by
2 (2 is a factor) R1
so the sum of the squares of any two consecutive odd integers
is even AG
[3 marks]
Total [5 marks]
– 6 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
3. attempt to integrate (M1)
2
d
21 4
d
u
ux x
x

2
82
dd
21
x
x
u
u
x

(A1)
EITHER

4 uC
A1
OR

2
42 1
x
C A1
THEN
correct substitution into their integrated function (must have
C
) (M1)
54 1CC

2
42 11fx x A1
Total [5 marks]
– 7 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
4.
no
y values below 1 A1
horizontal asymptote at
2y
with curve approaching from below as
x

A1

1,1
local minima A1

0,5 local maximum A1
smooth curve and smooth stationary points A1
Total [5 marks]
5. (a) attempt to form composition M1
correct substitution
33
85
44
xx
g





A1

211gf x x
AG
[2 marks]
(b) attempt to substitute 4 (seen anywhere) (M1)
correct equation
2411a 
(A1)
19a
A1
[3 marks]
Total [5 marks]
– 8 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
6. (a) attempting to use the change of base rule M1
3
9
3
log (cos 2 2)
log (cos 2 2)
log 9
x
x

A1
3
1
log (cos 2 2)
2
x A1
3
log cos 2 2x AG
[3 marks]
(b)
33
log (2sin ) log cos 2 2xx
2sin cos2 2xx
M1
2
4sin cos2 2xx (or equivalent) A1
use of
2
cos 2 1 2sin
x
x (M1)
2
6sin 3x

1
sin
2
x 
A1
π
4
x A1
Note: Award A0 if solutions other than
π
4
x are included.
[5 marks]
Total [8 marks]
– 9 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
7. attempting integration by parts, eg
ππ π 6π
,d d ,d sin d , cos
36 36 6 π 6
x
xx
uuxv xv
 

 
 
(M1)

3
3
0
0
π6 π 6 π
P0 3 cos cos d
36 π 6 π 6
xx x
X
x


 


 


 


(or equivalent) A1A1
Note: Award A1 for a correct
uv
and A1 for a correct dvu
.
attempting to substitute limits M1
3
0
π6 π
cos 0
36 π 6
xx






(A1)
so

3
0
P0 3 sin
π6
x
X







(or equivalent) A1
1
π
A1
Total [7 marks]
8. recognition that the angle between the normal and the line is
60
(seen anywhere) R1
attempt to use the formula for the scalar product M1
2
21
12
2
cos 60
914
p
p







A1
2
2
1
2
35
p
p
A1
2
35 4
p
p
attempt to square both sides M1
222
95 16 7 45ppp
5
3
7
p 
(or equivalent) A1A1
Total [7 marks]
– 10 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
9. (a) attempt to differentiate and set equal to zero M1
2
( ) 2e 6e 2e (e 3) 0
xx xx
fx

A1
minimum at
ln 3x
ln 3a
A1
[3 marks]
(b)
Note: Interchanging
x
and
y
can be done at any stage.

2
e3 4
x
y 
(M1)
e3 4
x
y
A1
as
ln 3x
,

ln 3 4xy
R1
so


1
ln 3 4fx x

A1
domain of
1
f
is
,4 5xx
A1
[5 marks]
Total [8 marks]
– 11 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Section B
10. (a) attempt to use quotient rule (M1)
correct substitution into quotient rule


2
1
5ln5
5
kx k x
x
fx
kx



(or equivalent) A1

22
ln 5
,
kk x
k
kx

A1
2
1ln5
x
kx
AG
[3 marks]
(b)

0fx
M1
2
1ln5
0
x
kx
ln 5 1
x
(A1)
e
5
x
A1
[3 marks]
(c)

0fx

M1
3
2ln5 3
0
x
kx
3
ln 5
2
x
A1
3
2
5ex
A1
so the point of inflexion occurs at
3
2
1
e
5
x
AG
[3 marks]
continued…
– 12 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Question 10 continued
(d) attempt to integrate (M1)
d1
ln 5
d
u
ux
x
x

ln 5 1
d d
x
x
uu
kx k

(A1)
EITHER
2
2
u
k
A1
so
3
3
2
2
2
1
1
1
d
2
u
uu
kk



A1
OR

2
ln 5
2
x
k
A1
so

3
3
2
2
1
1
e
e
2
5
5
e
e
5
5
ln 5
ln 5
d
2
x
x
x
kx k




A1
THEN
19
1
24k




5
8k
A1
setting their expression for area equal to
3 M1
5
3
8k
5
24
k
A1
[7 marks]
Total [16 marks]
– 13 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
11. (a) attempt to find modulus (M1)
23 12r 
A1
attempt to find argument in the correct quadrant (M1)
3
πarctan
3





A1
6
A1
5πi 5πi
66
33i12e 23e

 


[5 marks]
(b) attempt to find a root using de Moivre’s theorem M1
15πi
618
12 e
A1
attempt to find further two roots by adding and subtracting
3
to
the argument M1
17πi
618
12 e
A1
117πi
618
12 e A1
Note: Ignore labels for
,uv
and
w
at this stage.
[5 marks]
continued…
– 14 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Question 11 continued
(c) METHOD 1
attempting to find the total area of (congruent) triangles
UOV, VOW
and
UOW
M1
11
66
12π
Area 3 12 12 sin
23






A1A1
Note: Award A1 for
11
66
12 12



and A1 for
sin
3
.
1
3
33
12
4



(or equivalent) A1
[4 marks]
METHOD 2
22
11 11
2
66 66
UV 12 12 2 12 12 cos
3
 

 
 
(or equivalent) A1
1
6
UV 3 12



(or equivalent) A1
attempting to find the area of
UVW
using
1
Area UV VW sin
2

for example M1
11
66
Area 3 12 3 12 sin
23




1
3
33
12
4



(or equivalent) A1
[4 marks]
(d)
0uvw
R1
1
6
7π 7π 17π 17π
12 cos isin cos i sin cos isin 0
18 18 18 18 18 18

 
 
 

 

A1
consideration of real parts M1
1
6
5π 1
12 cos cos cos 0
18 18 18







cos cos
18 18




explicitly stated A1
7π 17π
cos cos cos 0
18 18 18

AG
[4 marks]
Total [18 marks]
– 15 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
12. (a) attempting to use the chain rule to find the first derivative M1
sin
cos e
x
fx x
A1
attempting to use the product rule to find the second derivative M1


sin 2
ecos sin
x
f
xxx


(or equivalent) A1
attempting to find

0f
,

0f
and
0f

M1
01f
;

sin 0
0cos0e 1f

;


sin 0 2
0e cos0sin01f


A1
substitution into the Maclaurin formula
2
( ) (0) (0) (0) ...
2!
x
fx f xf f


M1
so the Maclaurin series for

f
x
up to and including the
2
x
term is
2
1
2
x
x
A1
[8 marks]
(b) METHOD 1
attempting to differentiate
()
f
x

M1



sin 2 sin
cos e cos sin cos e 2sin 1
xx
fx x x x x x


(or equivalent) A2
substituting
0x
into their

f
x

M1

01101010f


so the coefficient of
3
x
in the Maclaurin series for

f
x is zero AG
METHOD 2
substituting
sin
x
into the Maclaurin series for e
x
(M1)
23
sin
sin sin
e 1 sin ...
2! 3!
x
xx
x
substituting Maclaurin series for
sin
x
M1
23
33
3
sin
... ...
3! 3!
e 1 ... ...
3! 2! 3!
x
xx
xx
x
x

 






A1
coefficient of
3
x
is
11
0
3! 3!
 A1
so the coefficient of
3
x
in the Maclaurin series for

f
x
is zero AG
[4 marks]
continued…
– 16 – SPEC/5/MATAA/HP1/ENG/TZ0/XX/M
Question 12 continued
(c) substituting
3
x
into the Maclaurin series for e
x
M1
 
23
3
33
e 1 3 ...
2! 3!
x
xx
x
A1
substituting
3
e1
x
into the Maclaurin series for
arctan
x
M1



35
33
33
e1 e1
arctan e 1 e 1 ...
35
xx
xx


 
 
3
23
23
33
3
2! 3!
33
3 ...
2! 3! 3
xx
x
xx
x










A1
selecting correct terms from above M1
  
23 3
33 3
3
2! 3! 3
x
xx
x





23
99
3
22
x
x
x
A1
[6 marks]
(d) METHOD 1
substitution of their series M1
2
2
0
...
2
lim
9
3 ...
2
x
x
x
x
x


A1
0
1...
2
lim
9
3...
2
x
x
x


1
3
A1
METHOD 2
use of l’Hôpital’s rule M1

sin
3
0
2
3
cos e
lim
3e
1e 1
x
x
x
x
x

(or equivalent) A1
1
3
A1
[3 marks]
Total [21 marks]
12EP01
Candidate session number
Mathematics: analysis and approaches
Higher level
Paper 2
12 pages
Specimen
2 hours
Instructions to candidates
Write your session number in the boxes above.
Do not open this examination paper until instructed to do so.
A graphic display calculator is required for this paper.
Section A: answer all questions. Answers must be written within the answer boxes provided.
Section B: answer all questions in the answer booklet provided. Fill in your session number
on the front of the answer booklet, and attach it to this examination paper and your
cover sheet using the tag provided.
Unless otherwise stated in the question, all numerical answers should be given exactly or
correct to three signicant gures.
A clean copy of the mathematics: analysis and approaches formula booklet is required for
this paper.
The maximum mark for this examination paper is [110 marks].
© International Baccalaureate Organization 2019
SPEC/5/MATAA/HP2/ENG/TZ0/XX
Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Solutions found from a graphic display calculator should be
supported by suitable working. For example, if graphs are used to nd a solution, you should sketch
these as part of your answer. Where an answer is incorrect, some marks may be given for a correct
method, provided this is shown by written working. You are therefore advised to show all working.
Section A
Answer all questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.
1. [Maximum mark: 6]
The following diagram shows part of a circle with centre O and radius 4 cm .
O
B
A
θ
4 cm
5 cm
Chord AB has a length of 5 cm and AÔB = θ .
(a) Find the value of θ , giving your answer in radians. [3]
(b) Find the area of the shaded region. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP02
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 2 –
2. [Maximum mark: 6]
On 1st January 2020, Laurie invests $P in an account that pays a nominal annual interest
rate of 5.5 % , compounded quarterly.
The amount of money in Laurie’s account at the end of each year follows a geometric
sequence with common ratio, r .
(a) Find the value of r , giving your answer to four signicant gures. [3]
Laurie makes no further deposits to or withdrawals from the account.
(b) Find the year in which the amount of money in Laurie’s account will become double the
amount she invested. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP03
Turn over
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 3 –
3. [Maximum mark: 6]
A six-sided biased die is weighted in such a way that the probability of obtaining a “six” is
7
10
.
The die is tossed ve times. Find the probability of obtaining
(a) at most three “sixes”. [3]
(b) the third “six” on the fth toss. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP04
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 4 –
4. [Maximum mark: 7]
The following table below shows the marks scored by seven students on two dierent
mathematics tests.
Test 1 (x)
15 23 25 30 34 34 40
Test 2 ( y)
20 26 27 32 35 37 35
Let L
1
be the regression line of x on y . The equation of the line L
1
can be written in the
form x =ay + b .
(a) Find the value of a and the value of b . [2]
Let L
2
be the regression line of y on x . The lines L
1
and L
2
pass through the same point
with coordinates ( p , q) .
(b) Find the value of p and the value of q . [3]
(c) Jennifer was absent for the rst test but scored 29 marks on the second test. Use an
appropriate regression equation to estimate Jennifer’s mark on the rst test. [2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP05
Turn over
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 5 –
5. [Maximum mark: 7]
The displacement, in centimetres, of a particle from an origin, O, at time t seconds, is given
by s (t) = t
2
cos t+2t sin t , 0 t 5 .
(a) Find the maximum distance of the particle from O. [3]
(b) Find the acceleration of the particle at the instant it rst changes direction. [4]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP06
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 6 –
6. [Maximum mark: 6]
In a city, the number of passengers, X , who ride in a taxi has the following probability distribution.
x
1 2 3 4 5
P (X = x)
0.60 0.30 0.03 0.05 0.02
After the opening of a new highway that charges a toll, a taxi company introduces a charge
for passengers who use the highway. The charge is $ 2.40 per taxi plus $ 1.20 per passenger.
Let T represent the amount, in dollars, that is charged by the taxi company per ride.
(a) Find E (T ) . [4]
(b) Given that Var (X ) = 0.8419 , nd Var (T ) . [2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP07
Turn over
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 7 –
7. [Maximum mark: 5]
Two ships, A and B , are observed from an origin O . Relative to O , their position vectors at
time t hours after midday are given by
r
A
=
+
4
3
5
8
t
r
B
=
+
7
3
0
12
t
where distances are measured in kilometres.
Find the minimum distance between the two ships.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP08
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 8 –
8. [Maximum mark: 7]
The complex numbers w and z satisfy the equations
w
z
= 2i
z
- 3w = 5 + 5i .
Find w and z in the form a + bi where a , b .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP09
Turn over
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 9 –
9. [Maximum mark: 5]
Consider the graphs of
y
x
x
=
2
3
and y = m (x + 3) , m .
Find the set of values for m such that the two graphs have no intersection points.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP10
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 10 –
Do not write solutions on this page.
Section B
Answer all questions in the answer booklet provided. Please start each question on a new page.
10. [Maximum mark: 15]
The length, X mm , of a certain species of seashell is normally distributed with mean 25 and
variance, σ
2
.
The probability that X is less than 24.15 is 0.1446 .
(a) Find P (24.15 < X < 25) . [2]
(b) (i) Find σ , the standard deviation of X .
(ii) Hence, nd the probability that a seashell selected at random has a length
greater than 26 mm . [5]
A random sample of 10 seashells is collected on a beach. Let Y represent the number of
seashells with lengths greater than 26 mm .
(c) Find E (Y ) . [3]
(d) Find the probability that exactly three of these seashells have a length greater
than 26 mm . [2]
A seashell selected at random has a length less than 26 mm .
(e) Find the probability that its length is between 24.15 mm and 25 mm . [3]
12EP11
Turn over
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 11 –
Do not write solutions on this page.
11. [Maximum mark: 21]
A large tank initially contains pure water. Water containing salt begins to ow into the tank
The solution is kept uniform by stirring and leaves the tank through an outlet at its base.
Let x grams represent the amount of salt in the tank and let t minutes represent the time
since the salt water began owing into the tank.
The rate of change of the amount of salt in the tank,
d
d
x
t
, is described by the dierential
equation
d
d
e
x
t
x
t
t
=−
+
10
1
4
.
(a) Show that t + 1 is an integrating factor for this dierential equation. [2]
(b) Hence, by solving this dierential equation, show that
xt
t
t
t
()
()
=
−+
+
200 40 5
1
4
e
. [8]
(c) Sketch the graph of x versus t for 0 t 60 and hence nd the maximum amount of
salt in the tank and the value of t at which this occurs. [5]
(d) Find the value of t at which the amount of salt in the tank is decreasing most rapidly. [2]
The rate of change of the amount of salt leaving the tank is equal to
x
t + 1
.
(e) Find the amount of salt that left the tank during the rst 60 minutes. [4]
12. [Maximum mark: 19]
(a) Show that
cot
tan
tan
2
1
2
2
θ
θ
θ
=
. [1]
(b) Verify that x = tan θ and x =- cot θ satisfy the equation x
2
+ (2 cot 2θ) x - 1= 0 . [7]
(c) Hence, or otherwise, show that the exact value of
ta
n
12
23
=
. [5]
(d) Using the results from parts (b) and (c) nd the exact value of
tanc
ot
24 24
.
Give your answer in the form
ab+ 3
where a , b . [6]
12EP12
SPEC/5/MATAA/HP2/ENG/TZ0/XX– 12 –
SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
16 pages
Markscheme
Specimen paper
Mathematics:
analysis and approaches
Higher level
Paper 2
– 2 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
Instructions to Examiners
Abbreviations
M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
Using the markscheme
1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.
2 Method and Answer/Accuracy marks
Do not automatically award full marks for a correct answer; all working must be checked, and
marks awarded according to the markscheme.
It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding
M mark(s), if any.
Where M and A marks are noted on the same line, e.g. M1A1, this usually means M1 for an
attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the
correct values.
Where there are two or more A marks on the same line, they may be awarded independently;
so if the first value is incorrect, but the next two are correct, award A0A1A1.
Where the markscheme specifies M2, A2
, etc., do not split the marks, unless there is a note.
Once a correct answer to a question or part-question is seen, ignore further correct working.
However, if further working indicates a lack of mathematical understanding do not award the final
A1. An exception to this may be in numerical answers, where a correct exact value is followed by
an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part,
and correct working shown, award FT marks as appropriate but do not award the final A1 in that
part.
Examples
Correct answer seen Further working seen Action
1.
82
5.65685...
(incorrect decimal value)
Award the final A1
(ignore the further working)
2.
1
sin 4
4
x
sin
x
Do not award the final A1
3.
log logab
log ( )ab
Do not award the final A1
– 3 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
3 Implied marks
Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if
implied in subsequent working.
Normally the correct work is seen or implied in the next line.
Marks without brackets can only be awarded for work that is seen.
4 Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is
used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be
working present and not just a final answer based on an incorrect answer to a previous part.
However, if the only marks awarded in a subpart are for the answer (i.e. there is no working
expected), then FT marks should be awarded if appropriate.
Within a question part, once an error is made, no further A marks can be awarded for work
which uses the error, but M marks may be awarded if appropriate.
If the question becomes much simpler because of an error then use discretion to award fewer
FT marks.
If the error leads to an inappropriate value (e.g. probability greater than 1, use of
1r for the
sum of an infinite GP,
sin 1.5
, non integer value where integer required), do not award the
mark(s) for the final answer(s).
The markscheme may use the word “their” in a description, to indicate that candidates may be
using an incorrect value.
Exceptions to this rule will be explicitly noted on the markscheme.
If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s),
award marks as appropriate, unless the question says hence. It is often possible to use a
different approach in subsequent parts that does not depend on the answer to previous parts.
5 Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR
penalty of 1 mark to that question
If the question becomes much simpler because of the MR, then use discretion to award
fewer marks.
If the MR leads to an inappropriate value (e.g. probability greater than
1,
sin 1.5
, non-integer
value where integer required), do not award the mark(s) for the final answer(s).
Miscopying of candidates’ own work does not constitute a misread, it is an error.
The MR penalty can only be applied when work is seen. For calculator questions with no
working and incorrect answers, examiners should not infer that values were read incorrectly.
– 4 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
6 Alternative methods
Alternative methods for complete questions are indicated by METHOD 1,
METHOD 2, etc.
Alternative solutions for part-questions are indicated by EITHER . . . OR.
7 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.
As this is an international examination, accept all alternative forms of notation.
In the markscheme, equivalent numerical and algebraic forms will generally be written in
brackets immediately following the answer.
In the markscheme, simplified answers, (which candidates often do not write in examinations),
will generally appear in brackets. Marks should be awarded for either the form preceding the
bracket or the form in brackets (if it is seen).
8 Accuracy of Answers
If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the
required accuracy. There are two types of accuracy errors, and the final answer mark should not be
awarded if these errors occur.
Rounding errors: only applies to final answers not to intermediate steps.
Level of accuracy: when this is not specified in the question the general rule applies to final
answers: unless otherwise stated in the question all numerical answers must be given exactly or
correct to three significant figures.
9 Calculators
A GDC is required for paper 2, but calculators with symbolic manipulation features/ CAS functionality
are not allowed.
Calculator notation
The subject guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of
calculator notation in the working.
Candidates will sometimes use methods other than those in the markscheme. Unless the question
specifies a method, other correct methods should be marked in line with the markscheme
– 5 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
Section A
1. (a) METHOD 1
attempt to use the cosine rule (M1)
222
445
cos
244


(or equivalent) A1
1.35
A1
[3 marks]
METHOD 2
attempt to split triangle
AOB into two congruent right triangles (M1)
2.5
sin
24



A1
1.35
A1
[3 marks]
(b) attempt to find the area of the shaded region (M1)
1
44(2
2

A1
39.5
(cm
2
) A1
[3 marks]
Total [6 marks]
2. (a)
4
5.5
1
4100



(M1)(A1)
1.056
A1
[3 marks]
continued…
– 6 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
Question 2 continued
(b) EITHER
4
5.5
21
100 4
n
PP




OR

2their()
m
P
Pa
(M1)(A1)
Note: Award (M1) for substitution into loan payment formula. Award (A1) for correct substitution.
OR
PV 1
FV 2
I% 5.5
P/Y 4
C/Y 4
50.756n 
(M1)(A1)
OR
PV 1
FV 2
I% 100 (their ( ) 1)a
P/Y 1
C/Y 1 (M1)(A1)
THEN
12.7 years
Laurie will have double the amount she invested during
2032 A1
[3 marks]
Total [6 marks]
3. (a) recognition of binomial (M1)
~B(5,0.7)X
attempt to find

P3X
M1

0.472 0.47178
A1
[3 marks]
(b) recognition of
2 sixes in 4 tosses (M1)

22
4
P 3rd six on the 5th toss 0.7 0.3 0.7( 0.2646 0.7)
2







A1

0.185 0.18522
A1
[3 marks]
Total [6 marks]
– 7 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
4. (a)
1.29a
and
10.4b 
A1A1
[2 marks]
(b) recognising both lines pass through the mean point (M1)
28.7, 30.3pq A2
[3 marks]
(c) substitution into their
x on y equation (M1)
1.29082(29) 10.3793x 
27.1x
A1
Note: Accept
27.
[2 marks]
Total [7 marks]
5. (a) use of a graph to find the coordinates of the local minimum (M1)
16.513...s 
(A1)
maximum distance is
16.5 cm (to the left of O) A1
[3 marks]
(b) attempt to find time when particle changes direction eg considering the
first maximum on the graph of
s
or the first t – intercept on the graph of
.s
(M1)
1.51986...t
(A1)
attempt to find the gradient of
s
for their value of t,

1.51986...s

(M1)
8.92
(cm/s
2
) A1
[4 marks]
Total [7 marks]
– 8 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
6. (a) METHOD 1
attempting to use the expected value formula (M1)

E 1 0.60 2 0.30 3 0.03 4 0.05 5 0.02X 

E1.59$X
(A1)
use of

E 1.20 2.40 1.20E 2.40XX
(M1)
E 1.20 1.59 2.40T 

4.31 $
A1
METHOD 2
attempting to find the probability distribution for
T (M1)
t
3.60 4.80 6.00 7.20 8.40

P Tt
0.60 0.30 0.03 0.05 0.02
(A1)
attempting to use the expected value formula (M1)
E 3.60 0.60 4.80 0.30 6.00 0.03 7.20 0.05 8.40 0.02T 

4.31 $
A1
[4 marks]
(b) METHOD 1
using

2
Var 1.20 2.40 1.20 Var
X
X
with

Var 0.8419X
(M1)

Var 1.21T
A1
METHOD 2
finding the standard deviation for their probability distribution found
in part (a) (M1)

2
Var 1.101...T
1.21
A1
Note: Award M1A1 for

2
Var 1.093... 1.20T 
.
[2 marks]
Total [6 marks]
– 9 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
7. attempting to find
BA
rr
for example (M1)
BA
35
64
t




rr
attempting to find
BA
rr
M1
distance

22
2
( ) 3 5 4 6 41 78 45dt t t t t
A1
using a graph to find the
d
coordinate of the local minimum M1
the minimum distance between the ships is
 
11 41
2.81 km km
41




A1
Total [5 marks]
8. substituting
2iwz
into
355izw

M1
6i 5 5izz

A1
let
izxy
comparing real and imaginary parts of

i6i i55ixy xy
M1
to obtain
65xy
and
65xy
A1
attempting to solve for
x
and
y
M1
1x 
and
1y
and so
1iz 
A1
hence
22iw 
A1
– 10 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
9. METHOD 1
sketching the graph of
2
3
x
y
x
(
9
3
3
yx
x

) M1
the (oblique) asymptote has a gradient equal to
1
and so the maximum value of
m
is 1 R1
consideration of a straight line steeper than the horizontal line joining

3, 0
and

0, 0
M1
so
0m
R1
hence
01m
A1
METHOD 2
attempting to eliminate y to form a quadratic equation in
x
M1

22
9xmx

2
190mxm
A1
EITHER
attempting to solve

4190mm
for
m
M1
OR
attempting to solve
2
0x ie

9
01
1
m
m
m

for
m
M1
THEN
01m
A1
a valid reason to explain why
1m
gives no solutions eg if
1m
,

2
19090mxm
and so
01m
R1
Total [5 marks]
– 11 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
Section B
10. (a) attempt to use the symmetry of the normal curve (M1)
eg diagram,
0.5 0.1446

P 24.15 25 0.3554X
A1
[2 marks]
(b) (i) use of inverse normal to find
z score (M1)
1.0598z 
correct substitution
24.15 25
1.0598

(A1)
0.802
A1
(ii)

P 26 0.106X 
(M1)A1
[5 marks]
(c) recognizing binomial probability (M1)
E( ) 10 0.10621Y
(A1)
1.06
A1
[3 marks]
(d)
P3Y
(M1)
0.0655
A1
[2 marks]
(e) recognizing conditional probability (M1)
correct substitution A1
0.3554
1 0.10621
0.398
A1
[3 marks]
Total [15 marks]
– 12 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
11. (a) METHOD 1
using


d
e
P
tt
It
M1
1
d
1
e
t
t

ln 1
e
t
A1
1t
AG
METHOD 2
attempting product rule differentiation on


d
1
d
xt
t
M1



dd
11
dd
x
x
ttx
tt


d
1
d1
x
x
t
tt




A1
so
1t
is an integrating factor for this differential equation AG
[2 marks]
continued…
– 13 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
Question 11 continued
(b) attempting to multiply through by
1t
and rearrange to give (M1)
 
4
d
1101e
d
t
x
txt
t

A1



4
d
1101e
d
t
xt t
t

 
4
1101e d
t
x
ttt

A1
attempting to integrate the RHS by parts M1

44
40 1 e 40 e d
tt
tt



44
40 1 e 160e
tt
tC


A1
Note: Condone the absence of
C
.
EITHER
substituting 0, 0tx
200C
M1

44
40 1 e 160e 200
1
tt
t
x
t


A1
using
4
40e
t
as the highest common factor of

4
40 1 e
t
t

and
4
160e
t
M1
OR
using
4
40e
t
as the highest common factor of

4
40 1 e
t
t

and
4
160e
t
giving
 
4
140e 5
t
x
ttC

(or equivalent) M1A1
substituting
0, 0tx
200C
M1
THEN


4
200 40e 5
1
t
t
xt
t

AG
[8 marks]
continued…
– 14 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
Question 11 continued
(c)
graph starts at the origin and has a local maximum (coordinates not required) A1
sketched for
060t
A1
correct concavity for
060t
A1
maximum amount of salt is
14.6 (grams) at
6.60t
(minutes) A1A1
[5 marks]
(d) using an appropriate graph or equation (first or second derivative) M1
amount of salt is decreasing most rapidly at
12.9t
(minutes) A1
[2 marks]
(e) EITHER
attempting to form an integral representing the amount of salt that left
the tank M1
60
0
()
d
1
x
t
t
t


60
4
2
0
200 40e 5
d
1
t
t
t
t

A1
OR
attempting to form an integral representing the amount of salt that entered the
tank minus the amount of salt in the tank at
60t
(minutes) M1
amount of salt that left the tank is

60
4
0
10e d 60
t
tx
A1
THEN
36.7
(grams) A2
[4 marks]
Total [21 marks]
– 15 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
12. (a) stating the relationship between cot and tan and stating the identity
for
tan 2
M1
1
cot 2
tan 2
and
2
2tan
tan 2
1tan
2
1tan
cot 2
2tan

AG
[1 mark]
(b) METHOD 1
attempting to substitute
tan
for x and using the result from (a) M1
2
2
1tan
LHS tan 2 tan 1
2tan





A1

22
tan 1 tan 1 0 RHS


A1
so
tanx
satisfies the equation AG
attempting to substitute
cot
for x and using the result from (a) M1
2
2
1tan
LHS cot 2 cot 1
2tan





A1
2
22
11tan
1
tan tan





A1

22
11
11 0 RHS
tan tan

A1
so
cotx

satisfies the equation AG
METHOD 2
let
tan
and
cot

attempting to find the sum of roots M1
1
tan
tan


2
tan 1
tan
A1
2cot2

(from part (a)) A1
attempting to find the product of roots M1

tan cot


A1
1
A1
the coefficient of
x and the constant term in the quadratic are
2cot2
and
1 respectively R1
hence the two roots are
tan
and
cot

AG
[7 marks]
continued…
– 16 – SPEC/5/MATAA/HP2/ENG/TZ0/XX/M
Question 12 continued
(c) METHOD 1
π
tan
12
x
and
π
cot
12
x 
are roots of
2
π
2cot 1 0
6
xx




R1
Note: Award R1 if only
π
tan
12
x
is stated as a root of
2
π
2cot 1 0
6
xx




.
2
23 1 0xx A1
attempting to solve their quadratic equation M1
32x  A1
π
tan 0
12
(
π
cot 0
12

) R1
so
π
tan 2 3
12

AG
METHOD 2
attempting to substitute
π
12
into the identity for
tan 2
M1
2
π
2tan
π
12
tan
π
6
1tan
12
2
ππ
tan 2 3 tan 1 0
12 12

A1
attempting to solve their quadratic equation M1
π
tan 3 2
12

A1
π
tan 0
12
R1
so
π
tan 2 3
12

AG
[5 marks]
(d)
ππ
tan cot
24 24
is the sum of the roots of
2
π
2cot 1 0
12
xx




R1
ππ π
tan cot 2 cot
24 24 12

A1
2
23
A1
attempting to rationalise their denominator (M1)
423 A1A1
[6 marks]
Total [19 marks]
Mathematics: analysis and approaches
Higher level
Paper 3
5 pages
Specimen
1 hour
Instructions to candidates
Do not open this examination paper until instructed to do so.
A graphic display calculator is required for this paper.
Answer all the questions in the answer booklet provided.
Unless otherwise stated in the question, all numerical answers should be given exactly or
correct to three signicant gures.
A clean copy of the mathematics: analysis and approaches formula booklet is required for
this paper.
The maximum mark for this examination paper is [55 marks].
© International Baccalaureate Organization 2019
SPEC/5/MATAA/HP3/ENG/TZ0/XX
Answer all questions in the answer booklet provided. Please start each question on a new page. Full
marks are not necessarily awarded for a correct answer with no working. Answers must be supported
by working and/or explanations. Solutions found from a graphic display calculator should be supported
by suitable working. For example, if graphs are used to nd a solution, you should sketch these as part
of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided
this is shown by written working. You are therefore advised to show all working.
1. [Maximum mark: 30]
This question asks you to investigate regular n-sided polygons inscribed and circumscribed
in a circle, and the perimeter of these as n tends to innity, to make an approximation for π .
(a) Consider an equilateral triangle ABC of side length, x units, inscribed in a circle of
radius 1 unit and centre O as shown in the following diagram.
O
BC
A
x
x
x
The equilateral triangle ABC can be divided into three smaller isosceles triangles, each
subtending an angle of
2
3
at O, as shown in the following diagram.
2π
3
11
O
BC x
Using right-angled trigonometry or otherwise, show that the perimeter of the equilateral
triangle ABC is equal to
33
units. [3]
(b) Consider a square of side length, x units, inscribed in a circle of radius 1 unit.
By dividing the inscribed square into four isosceles triangles, nd the exact perimeter of
the inscribed square. [3]
(This question continues on the following page)
SPEC/5/MATAA/HP3/ENG/TZ0/XX– 2 –
(Question 1 continued)
(c) Find the perimeter of a regular hexagon, of side length, x units, inscribed in a circle of
radius 1 unit. [2]
Let P
i
(n) represent the perimeter of any n-sided regular polygon inscribed in a circle of
radius 1 unit.
(d) Show that
Pn
n
n
i
() sin=
2
. [3]
(e) Use an appropriate Maclaurin series expansion to nd
lim()
n
i
Pn
→∞
and interpret this
result geometrically. [5]
Consider an equilateral triangle ABC of side length, x units, circumscribed about a circle of
radius 1 unit and centre O as shown in the following diagram.
x x
A
BC
O
x
1
Let P
c
(n) represent the perimeter of any n-sided regular polygon circumscribed about a
circle of radius 1 unit.
(f) Show that
Pn n
n
c
() tan=
2
. [4]
Consider the function
Px x
x
() tan=
2
where x , x > 2 .
(g) (i) By writing P (x) in the form
2
1
tan
x
x
, nd
lim()
x
Px
→∞
.
(ii) Hence state the value of
li
m(
)
n
c
Pn
→∞
for integers n > 2 . [5]
(This question continues on the following page)
Turn over
SPEC/5/MATAA/HP3/ENG/TZ0/XX– 3 –
(Question 1 continued)
(h) Use the results from part (d) and part (f) to determine an inequality for the value of π in
terms of n . [2]
The inequality found in part (h) can be used to determine lower and upper bound
approximations for the value of π .
(i) Determine the least value for n such that the lower bound and upper bound
approximations are both within 0.005 of π . [3]
SPEC/5/MATAA/HP3/ENG/TZ0/XX– 4 –
2. [Maximum mark: 25]
This question asks you to investigate some properties of the sequence of functions of the
form f
n
(x) = cos
(
n arccos x
)
, -1 x 1 and n
+
.
Important: When sketching graphs in this question, you are not required to nd the
coordinates of any axes intercepts or the coordinates of any stationary points unless requested.
(a) On the same set of axes, sketch the graphs of y = f
1
(x) and y = f
3
(x) for -1 x 1 . [2]
(b) For odd values of n > 2 , use your graphic display calculator to systematically vary the
value of n . Hence suggest an expression for odd values of n describing, in terms of n ,
the number of
(i) local maximum points;
(ii) local minimum points. [4]
(c) On a new set of axes, sketch the graphs of y = f
2
(x) and y = f
4
(x) for -1 x 1 . [2]
(d) For even values of n > 2 , use your graphic display calculator to systematically vary
the value of n . Hence suggest an expression for even values of n describing, in terms
of n , the number of
(i) local maximum points;
(ii) local minimum points. [4]
(e) Solve the equation f
n
' (x) = 0 and hence show that the stationary points on the graph
of y = f
n
(x) occur at
x
k
n
= cos
where k
+
and 0 < k < n . [4]
The sequence of functions, f
n
(x) , dened above can be expressed as a sequence of
polynomials of degree n .
(f) Use an appropriate trigonometric identity to show that f
2
(x) = 2x
2
- 1 . [2]
Consider f
n + 1
(x) = cos
(
(n + 1) arccos x
)
.
(g) Use an appropriate trigonometric identity to show that
f
n + 1
(x) = cos (n arccos x)
cos (arccos x) - sin (n arccos x) sin (arccos x) . [2]
(h) Hence
(i) show that f
n + 1
(x) + f
n - 1
(x) = 2xf
n
(x) , n
+
;
(ii) express f
3
(x) as a cubic polynomial. [5]
SPEC/5/MATAA/HP3/ENG/TZ0/XX– 5 –
SPEC/5/MATAA/HP3/ENG/TZ0/XX/M
9 pages
Markscheme
Specimen paper
Mathematics:
analysis and approaches
Higher level
Paper 3
– 2 – SPEC/5/MATAA/HP3/ENG/TZ0/XX/M
Instructions to Examiners
Abbreviations
M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
Using the markscheme
1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.
2 Method and Answer/Accuracy marks
Do not automatically award full marks for a correct answer; all working must be checked, and
marks awarded according to the markscheme.
It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding
M mark(s), if any.
Where M and A marks are noted on the same line, e.g. M1A1, this usually means M1 for an
attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the
correct values.
Where there are two or more A marks on the same line, they may be awarded independently;
so if the first value is incorrect, but the next two are correct, award A0A1A1.
Where the markscheme specifies M2, A2
, etc., do not split the marks, unless there is a note.
Once a correct answer to a question or part-question is seen, ignore further correct working.
However, if further working indicates a lack of mathematical understanding do not award the final
A1. An exception to this may be in numerical answers, where a correct exact value is followed by
an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part,
and correct working shown, award FT marks as appropriate but do not award the final A1 in that
part.
Examples
Correct answer seen Further working seen Action
1.
82
5.65685...
(incorrect decimal value)
Award the final A1
(ignore the further working)
2.
1
sin 4
4
x
sin
x
Do not award the final A1
3.
log logab
log ( )ab
Do not award the final A1
– 3 – SPEC/5/MATAA/HP3/ENG/TZ0/XX/M
3 Implied marks
Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if
implied in subsequent working.
Normally the correct work is seen or implied in the next line.
Marks without brackets can only be awarded for work that is seen.
4 Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is
used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be
working present and not just a final answer based on an incorrect answer to a previous part.
However, if the only marks awarded in a subpart are for the answer (i.e. there is no working
expected), then FT marks should be awarded if appropriate.
Within a question part, once an error is made, no further A marks can be awarded for work
which uses the error, but M marks may be awarded if appropriate.
If the question becomes much simpler because of an error then use discretion to award fewer
FT marks.
If the error leads to an inappropriate value (e.g. probability greater than 1, use of
1r
for the
sum of an infinite GP,
sin 1.5
, non integer value where integer required), do not award the
mark(s) for the final answer(s).
The markscheme may use the word “their” in a description, to indicate that candidates may be
using an incorrect value.
Exceptions to this rule will be explicitly noted on the markscheme.
If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s),
award marks as appropriate, unless the question says hence. It is often possible to use a
different approach in subsequent parts that does not depend on the answer to previous parts.
5 Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR
penalty of 1 mark to that question
If the question becomes much simpler because of the MR, then use discretion to award
fewer marks.
If the MR leads to an inappropriate value (e.g. probability greater than
1,
sin 1.5
, non-integer
value where integer required), do not award the mark(s) for the final answer(s).
Miscopying of candidates’ own work does not constitute a misread, it is an error.
The MR penalty can only be applied when work is seen. For calculator questions with no
working and incorrect answers, examiners should not infer that values were read incorrectly.
– 4 – SPEC/5/MATAA/HP3/ENG/TZ0/XX/M
6 Alternative methods
Alternative methods for complete questions are indicated by METHOD 1,
METHOD 2, etc.
Alternative solutions for part-questions are indicated by EITHER . . . OR.
7 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.
As this is an international examination, accept all alternative forms of notation.
In the markscheme, equivalent numerical and algebraic forms will generally be written in
brackets immediately following the answer.
In the markscheme, simplified answers, (which candidates often do not write in examinations),
will generally appear in brackets. Marks should be awarded for either the form preceding the
bracket or the form in brackets (if it is seen).
8 Accuracy of Answers
If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the
required accuracy. There are two types of accuracy errors, and the final answer mark should not be
awarded if these errors occur.
Rounding errors: only applies to final answers not to intermediate steps.
Level of accuracy: when this is not specified in the question the general rule applies to final
answers: unless otherwise stated in the question all numerical answers must be given exactly or
correct to three significant figures.
9 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features/ CAS functionality
are not allowed.
Calculator notation
The subject guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of
calculator notation in the working.
Candidates will sometimes use methods other than those in the markscheme. Unless the question
specifies a method, other correct methods should be marked in line with the markscheme
– 5 – SPEC/5/MATAA/HP3/ENG/TZ0/XX/M
1. (a) METHOD 1
consider right-angled triangle
OCX where
CX
2
x
π
2
sin
31
x
M1A1
3
3
22
x
x
A1
333
i
Px
AG
METHOD 2
eg use of the cosine rule

222
11211cos
3
x 
M1A1
3x
A1
333
i
Px
AG
Note: Accept use of sine rule.
[3 marks]
(b)
π1
sin
4
x
where
x
side of square M1
2x
A1
42
i
P
A1
[3 marks]
(c) 6 equilateral triangles
1
x

A1
6
i
P
A1
[2 marks]
(d) in right-angled triangle
π
2
sin
1
x
n



M1
π
2sinx
n




A1
i
Pnx
π
2sin
i
Pn
n




M1
π
2sin
i
Pn
n



AG
[3 marks]
continued…
– 6 – SPEC/5/MATAA/HP3/ENG/TZ0/XX/M
Question 1 continued
(e) consider
π
lim 2 sin
n
n
n




use of
35
sin
3! 5!
xx
xx
M1
35
35
ππππ
2sin 2
6120
nn
nnnn







(A1)
35
24
ππ
6120nn




A1
π
lim 2 sin 2π
n
n
n





A1
as
n 
polygon becomes a circle of radius 1 and
i
P
R1
[5 marks]
(f) consider an
n-sided polygon of side length
x
2n right-angled triangles with angle
π
2nn
at centre M1A1
opposite side
ππ
tan 2tan
2
x
x
nn
 

 
 
M1A1
Perimeter
π
2tan
c
Pn
n



AG
[4 marks]
(g) (i)

π
2tan
0
lim lim
1
0
xx
x
Px
x
 




R1
attempt to use L’Hôpital’s rule M1

2
2
2
π
sec
lim lim
1
xx
x
x
Px
x
 



A1

lim 2π
x
Px

A1
(ii)

lim 2π
c
n
Pn

A1
[5 marks]
continued…
– 7 – SPEC/5/MATAA/HP3/ENG/TZ0/XX/M
Question 1 continued
(h)
ic
PP
ππ
2sin 2π 2tannn
nn
 

 
 
M1
ππ
sin π tannn
nn
 

 
 
A1
[2 marks]
(i) attempt to find the lower bound and upper bound approximations within
0.005 of
π
(M1)
46n
A2
[3 marks]
Total [30 marks]
2. (a) correct graph of
1
()
y
fx
A1
correct graph of
3
()
y
fx
A1
[2 marks]
(b) (i) graphical or tabular evidence that
n
has been systematically varied M1
eg
3n
,
1
local maximum point and
1
local minimum point
5n
,
2
local maximum points and
2
local minimum points
7n
,
3
local maximum points and
3
local minimum points (A1)
1
2
n
local maximum points A1
(ii)
1
2
n
local minimum points A1
Note: Allow follow through from an incorrect local maximum formula expression.
[4 marks]
continued…
– 8 – SPEC/5/MATAA/HP3/ENG/TZ0/XX/M
Question 2 continued
(c) correct graph of
2
()
y
fx
A1
correct graph of
4
()
y
fx
A1
[2 marks]
(d) (i) graphical or tabular evidence that
n
has been systematically varied M1
eg
2n
,
0
local maximum point and
1
local minimum point
4n
,
1
local maximum points and
2
local minimum points
6n
,
2
local maximum points and
3
local minimum points (A1)
2
2
n
local maximum points A1
(ii)
2
n
local minimum points A1
[4 marks]
(e)
cos arccos
n
f
xnx



2
sin arccos
1
n
nn x
fx
x
M1A1
Note: Award M1 for attempting to use the chain rule.
 
0 sin arccos 0
n
fx n n x

M1
arccos πnxk
(
k
) A1
leading to
π
cos
k
x
n
(
k
and
0 kn
) AG
[4 marks]
continued…
– 9 – SPEC/5/MATAA/HP3/ENG/TZ0/XX/M
Question 2 continued
(f)

2
cos 2arccos
f
xx


2
2 cos arccos 1x
M1
stating that


cos arccos
x
x
A1
so
2
2
21fx x
AG
[2 marks]
(g)
  

1
cos 1 arccos
n
f
xn x


cos arccos arccosnx x
A1
use of
cos cos cos sin sin
A
BABAB
leading to M1
cos arccos cos arccos sin arccos sin arccosnx x nx x
AG
[2 marks]
(h) (i)
  

1
cos 1 arccos
n
f
xn x

A1

cos arccos cos arccos sin arccos sin arccosnx x nx x
M1
11
2cos arccos cos arccos
nn
f
xfx n x x


A1

2
n
x
fx
AG
(ii)
  
321
2
f
xxfxfx
(M1)

2
22 1
x
xx
3
43
x
x
A1
[5 marks]
Total [25 marks]
Candidate session number
Mathematics: analysis and approaches
Standard level
Paper 1
10 pages
Specimen
1 hour 30 minutes
Instructions to candidates
Write your session number in the boxes above.
Do not open this examination paper until instructed to do so.
You are not permitted access to any calculator for this paper.
Section A: answer all questions. Answers must be written within the answer boxes provided.
Section B: answer all questions in the answer booklet provided. Fill in your session number
on the front of the answer booklet, and attach it to this examination paper and your
cover sheet using the tag provided.
Unless otherwise stated in the question, all numerical answers should be given exactly or
correct to three signicant gures.
A clean copy of the mathematics: analysis and approaches formula booklet is required for
this paper.
The maximum mark for this examination paper is [80 marks].
12EP01
© International Baccalaureate Organization 2019
SPEC/5/MATAA/SP1/ENG/TZ0/XX
Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Where an answer is incorrect, some marks may be given
for a correct method, provided this is shown by written working. You are therefore advised to show all
working.
Section A
Answer all questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.
1. [Maximum mark: 5]
The following diagram shows triangle ABC, with AB = 6 and AC = 8 .
diagram not to scale
B
CA
8
6
(a) Given that
co
s A =
5
6
, nd the value of sin
cos A =
5
6
. [3]
(b) Find the area of triangle ABC . [2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP02
SPEC/5/MATAA/SP1/ENG/TZ0/XX– 2 –
2. [Maximum mark: 5]
Let A and B be events such that P (A) = 0.5 , P (B) = 0.4 and P (A B) = 0.6 .
Find P (A | B) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
12EP03
SPEC/5/MATAA/SP1/ENG/TZ0/XX– 3 –
3. [Maximum mark: 5]
(a) Show that (2n - 1)
2
+ (2n + 1)
2
= 8n
2
+ 2 , where n . [2]
(b) Hence, or otherwise, prove that the sum of the squares of any two consecutive odd
integers is even. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP04
SPEC/5/MATAA/SP1/ENG/TZ0/XX– 4 –
4. [Maximum mark: 5]
Let
=
+
fx
x
x
()
8
21
2
. Given that f (0) = 5 , nd f (x) .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
12EP05
SPEC/5/MATAA/SP1/ENG/TZ0/XX– 5 –
5. [Maximum mark: 5]
The functions f and g are dened such that
fx
x
()=
+
3
4
and g (x) = 8x + 5 .
(a) Show that ( g f )(x) = 2x + 11 . [2]
(b) Given that ( g f )
-1
(a) = 4 , nd the value of a . [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP06
SPEC/5/MATAA/SP1/ENG/TZ0/XX– 6 –
6. [Maximum mark: 8]
(a) Show that
log(cos)logcos
93
22
22xx
+= +
. [3]
(b) Hence or otherwise solve log
3
(2 sin x) = log
9
(cos 2x + 2) for
0
2
<<
x
. [5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Turn over
12EP07
SPEC/5/MATAA/SP1/ENG/TZ0/XX– 7 –
Do not write solutions on this page.
Section B
Answer all questions in the answer booklet provided. Please start each question on a new page.
7. [Maximum mark: 15]
A large company surveyed 160 of its employees to nd out how much time they spend
traveling to work on a given day. The results of the survey are shown in the following
cumulative frequency diagram.
10 20 40 50 60
0
7030
20
40
60
80
100
120
140
160
travelling time (minutes)
cumulative frequency
(This question continues on the following page)
12EP08
SPEC/5/MATAA/SP1/ENG/TZ0/XX– 8 –
Do not write solutions on this page.
(Question 7 continued)
(a) Find the median number of minutes spent traveling to work. [2]
(b) Find the number of employees whose travelling time is within 15 minutes of the median. [3]
Only 10% of the employees spent more than k minutes traveling to work.
(c) Find the value of k . [3]
The results of the survey can also be displayed on the following box-and-whisker diagram.
a
b
47
5
travelling times (minutes)
(d) Write down the value of b . [1]
(e) (i) Find the value of a .
(ii) Hence, nd the interquartile range. [4]
Travelling times of less than p minutes are considered outliers.
(f) Find the value of p . [2]
8. [Maximum mark: 16]
Let
fx xx x()=+
−+
1
3
15 17
32
.
(a) Find f ' (x) . [2]
The graph of f has horizontal tangents at the points where x = a and x = b , a < b .
(b) Find the value of a and the value of b . [3]
(c) (i) Sketch the graph of y = f ' (x) .
(ii) Hence explain why the graph of f has a local maximum point at x = a . [2]
(d) (i) Find f " (b) .
(ii) Hence, use your answer to part (d)(i) to show that the graph of f has a local
minimum point at x = b . [4]
The normal to the graph of f at x = a and the tangent to the graph of f at x = b intersect at
the point ( p , q) .
(e) Find the value of p and the value of q . [5]
Turn over
12EP09
SPEC/5/MATAA/SP1/ENG/TZ0/XX– 9 –
Do not write solutions on this page.
9. [Maximum mark: 16]
Let
fx
x
kx
()
ln
=
5
where x > 0 , k
+
.
(a) Show that
=
fx
x
kx
()
ln
15
2
. [3]
The graph of f has exactly one maximum point P .
(b) Find the x-coordinate of P . [3]
The second derivative of f is given by
′′
=
fx
x
kx
()
ln25 3
3
. The graph of f has exactly one
point of inexion Q .
(c) Show that the x-coordinate of Q is
1
5
3
2
e
. [3]
The region R is enclosed by the graph of f , the x-axis, and the vertical lines through the
maximum point P and the point of inexion Q .
y
x
R
P
Q
(d) Given that the area of R is 3, nd the value of k . [7]
12EP10
SPEC/5/MATAA/SP1/ENG/TZ0/XX– 10 –
Please do not write on this page.
Answers written on this page
will not be marked.
12EP11
Please do not write on this page.
Answers written on this page
will not be marked.
12EP12
SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
11 pages
Markscheme
Specimen paper
Mathematics:
analysis and approaches
Standard level
Paper 1
– 2 – SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
Instructions to Examiners
Abbreviations
M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
Using the markscheme
1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.
2 Method and Answer/Accuracy marks
Do not automatically award full marks for a correct answer; all working must be checked, and
marks awarded according to the markscheme.
It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding
M mark(s), if any.
Where M and A marks are noted on the same line, e.g. M1A1, this usually means M1 for an
attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the
correct values.
Where there are two or more A marks on the same line, they may be awarded independently;
so if the first value is incorrect, but the next two are correct, award A0A1A1.
Where the markscheme specifies M2, A2
, etc., do not split the marks, unless there is a note.
Once a correct answer to a question or part-question is seen, ignore further correct working.
However, if further working indicates a lack of mathematical understanding do not award the final
A1. An exception to this may be in numerical answers, where a correct exact value is followed by
an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part,
and correct working shown, award FT marks as appropriate but do not award the final A1 in that
part.
Examples
Correct answer seen Further working seen Action
1.
82
5.65685...
(incorrect decimal value)
Award the final A1
(ignore the further working)
2.
1
sin 4
4
x
sin
x
Do not award the final A1
3.
log logab
log ( )ab
Do not award the final A1
– 3 – SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
3 Implied marks
Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if
implied in subsequent working.
Normally the correct work is seen or implied in the next line.
Marks without brackets can only be awarded for work that is seen.
4 Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is
used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be
working present and not just a final answer based on an incorrect answer to a previous part.
However, if the only marks awarded in a subpart are for the answer (i.e. there is no working
expected), then FT marks should be awarded if appropriate.
Within a question part, once an error is made, no further A marks can be awarded for work
which uses the error, but M marks may be awarded if appropriate.
If the question becomes much simpler because of an error then use discretion to award fewer
FT marks.
If the error leads to an inappropriate value (e.g. probability greater than 1, use of
1r
for the
sum of an infinite GP,
sin 1.5
, non integer value where integer required), do not award the
mark(s) for the final answer(s).
The markscheme may use the word “their” in a description, to indicate that candidates may be
using an incorrect value.
Exceptions to this rule will be explicitly noted on the markscheme.
If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s),
award marks as appropriate, unless the question says hence. It is often possible to use a
different approach in subsequent parts that does not depend on the answer to previous parts.
5 Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR
penalty of 1 mark to that question
If the question becomes much simpler because of the MR, then use discretion to award
fewer marks.
If the MR leads to an inappropriate value (e.g. probability greater than
1,
sin 1.5
, non-integer
value where integer required), do not award the mark(s) for the final answer(s).
Miscopying of candidates’ own work does not constitute a misread, it is an error.
The MR penalty can only be applied when work is seen. For calculator questions with no
working and incorrect answers, examiners should not infer that values were read incorrectly.
– 4 – SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
6 Alternative methods
Alternative methods for complete questions are indicated by METHOD 1,
METHOD 2, etc.
Alternative solutions for part-questions are indicated by EITHER . . . OR.
7 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.
As this is an international examination, accept all alternative forms of notation.
In the markscheme, equivalent numerical and algebraic forms will generally be written in
brackets immediately following the answer.
In the markscheme, simplified answers, (which candidates often do not write in examinations),
will generally appear in brackets. Marks should be awarded for either the form preceding the
bracket or the form in brackets (if it is seen).
8 Accuracy of Answers
If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the
required accuracy. There are two types of accuracy errors, and the final answer mark should not be
awarded if these errors occur.
Rounding errors: only applies to final answers not to intermediate steps.
Level of accuracy: when this is not specified in the question the general rule applies to final
answers: unless otherwise stated in the question all numerical answers must be given exactly or
correct to three significant figures.
9 Calculators
No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no
grade awarded. If you see work that suggests a candidate has used any calculator, please follow
the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.
Candidates will sometimes use methods other than those in the markscheme. Unless the question
specifies a method, other correct methods should be marked in line with the markscheme
– 5 – SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
Section A
1. (a) valid approach using Pythagorean identity (M1)
2
2
5
sin + 1
6
A



(or equivalent) (A1)
11
sin =
6
A
A1
[3 marks]
(b)
111
86
26

(or equivalent) (A1)
area = 4 11
A1
[2 marks]
Total [5 marks]
2. attempt to substitute into
PPPP
A
BABAB
(M1)
Note: Accept use of Venn diagram or other valid method.
0.6 0.5 0.4 P( )
A
B
(A1)

P0.3AB
(seen anywhere) A1
attempt to substitute into



P
P|
P
A
B
AB
B
(M1)
0.3
0.4
P|
A
B
3
0.75
4




A1
Total [5 marks]
– 6 – SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
3. (a) attempting to expand the LHS (M1)

22
LHS 4 4 1 4 4 1nn nn
A1
2
82RHSn
AG
[2 marks]
(b) METHOD 1
recognition that
21n
and
21n
represent two consecutive odd
integers (for
n
) R1

22
82241nn
A1
valid reason eg divisible by
2 (2 is a factor) R1
so the sum of the squares of any two consecutive odd integers is even AG
[3 marks]
METHOD 2
recognition, eg that
n
and
2n
represent two consecutive odd integers
(for
n
) R1


2
22
22 22nn n n
A1
valid reason eg divisible by
2 (2 is a factor) R1
so the sum of the squares of any two consecutive odd integers is even AG
[3 marks]
Total [5 marks]
4. attempt to integrate (M1)
2
d
21 4
d
u
ux x
x

2
82
dd
21
x
x
u
u
x

(A1)
EITHER
4 uC
A1
OR

2
42 1
x
C
A1
THEN
correct substitution into their integrated function (must have
C
) (M1)
54 1CC

2
42 11fx x
A1
Total [5 marks]
– 7 – SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
5. (a) attempt to form composition M1
correct substitution
33
85
44
xx
g





A1

211gf x x
AG
[2 marks]
(b) attempt to substitute 4 (seen anywhere) (M1)
correct equation
2411a 
(A1)
19a
A1
[3 marks]
Total [5 marks]
6. (a) attempting to use the change of base rule M1
3
9
3
log (cos 2 2)
log (cos 2 2)
log 9
x
x

A1
3
1
log (cos 2 2)
2
x
A1
3
log cos 2 2x
AG
[3 marks]
(b)
33
log (2sin ) log cos 2 2xx
2sin cos2 2xx
M1
2
4sin cos2 2xx
(or equivalent) A1
use of
2
cos 2 1 2sin
x
x
(M1)
2
6sin 3x

1
sin
2
x 
A1
π
4
x
A1
Note: Award A0 if solutions other than
π
4
x
are included.
[5 marks]
Total [8 marks]
– 8 – SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
Section B
7. (a) evidence of median position (M1)
80th employee
40 minutes A1
[2 marks]
(b) valid attempt to find interval (
2555) (M1)
18 (employees), 142 (employees) A1
124 A1
[3 marks]
(c) recognising that there are
16 employees in the top 10% (M1)
144 employees travelled more than k minutes (A1)
A1
[3 marks]
(d)
70b
A1
[1 mark]
(e) (i) recognizing
a is first quartile value (M1)
40 employees
A1
(ii)
47 33
(M1)
IQR 14
A1
[4 marks]
(f) attempt to find
1.5 IQR their
(M1)
33 21
12
(A1)
[2 marks]
[Total 15 marks]
8. (a)
2
() 2 15fx x x

(M1)A1
[2 marks]
(b) correct reasoning that
() 0fx
(seen anywhere) (M1)
2
2150xx
valid approach to solve quadratic M1
(3)(5)xx
, quadratic formula
correct values for
x
3, 5
correct values for
a and b
5a 
and
3b
A1
[3 marks]
continued…
56k
33a
– 9 – SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
Question 8 continued
(c) (i)
A1
(ii) first derivative changes from positive to negative at
x
a
A1
so local maximum at
x
a
AG
[2 marks]
(d) (i)
() 2 2fx x


A1
substituting their
b into their second derivative (M1)
(3) 2 3 2f


() 8fb

(A1)
(ii)
()
f
b

is positive so graph is concave up R1
so local minimum at
x
b
AG
[4 marks]
(e) normal to
f at
x
a
is
5x 
(seen anywhere) (A1)
attempt to find
y-coordinate at their value of b (M1)
(3) 10f 
(A1)
tangent at
x
b
has equation
10y 
(seen anywhere) A1
intersection at

5, 10
5p 
and
10q 
A1
[5 marks]
[Total 16 marks]
– 10 – SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
9. (a) attempt to use quotient rule (M1)
correct substitution into quotient rule


2
1
5ln5
5
kx k x
x
fx
kx



(or equivalent) A1

22
ln 5
,
kk x
k
kx

A1
2
1ln5
x
kx
AG
[3 marks]
(b)

0fx
M1
2
1ln5
0
x
kx
ln 5 1
x
(A1)
e
5
x
A1
[3 marks]
(c)

0fx

M1
3
2ln5 3
0
x
kx
3
ln 5
2
x
A1
3
2
5ex
A1
so the point of inflexion occurs at
3
2
1
e
5
x
AG
[3 marks]
continued…
– 11 – SPEC/5/MATAA/SP1/ENG/TZ0/XX/M
Question 9 continued
(d) attempt to integrate (M1)
d1
ln 5
d
u
ux
x
x

ln 5 1
d d
x
x
uu
kx k

(A1)
EITHER
2
2
u
k
A1
so
3
3
2
2
2
1
1
1
d
2
u
uu
kk



A1
OR

2
ln 5
2
x
k
A1
so

3
3
2
2
1
1
e
e
2
5
5
e
e
5
5
ln 5
ln 5
d
2
x
x
x
kx k




A1
THEN
19
1
24k




5
8k
A1
setting their expression for area equal to
3 M1
5
3
8k
5
24
k
A1
[7 marks]
Total [16 marks]
12EP01
Candidate session number
Mathematics: analysis and approaches
Standard level
Paper 2
10 pages
Specimen
1 hour 30 minutes
Instructions to candidates
Write your session number in the boxes above.
Do not open this examination paper until instructed to do so.
A graphic display calculator is required for this paper.
Section A: answer all questions. Answers must be written within the answer boxes provided.
Section B: answer all questions in the answer booklet provided. Fill in your session number
on the front of the answer booklet, and attach it to this examination paper and your
cover sheet using the tag provided.
Unless otherwise stated in the question, all numerical answers should be given exactly or
correct to three signicant gures.
A clean copy of the mathematics: analysis and approaches formula booklet is required for
this paper.
The maximum mark for this examination paper is [80 marks].
© International Baccalaureate Organization 2019
SPEC/5/MATAA/SP2/ENG/TZ0/XX
Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. Solutions found from a graphic display calculator should be
supported by suitable working. For example, if graphs are used to nd a solution, you should sketch
these as part of your answer. Where an answer is incorrect, some marks may be given for a correct
method, provided this is shown by written working. You are therefore advised to show all working.
Section A
Answer all questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.
1. [Maximum mark: 6]
A metal sphere has a radius 12.7 cm.
(a) Find the volume of the sphere expressing your answer in the form a × 10
k
, 1 a < 10
and k . [3]
The sphere is to be melted down and remoulded into the shape of a cone with a height of 14.8 cm.
(b) Find the radius of the base of the cone, correct to 2 signicant gures. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP02
SPEC/5/MATAA/SP2/ENG/TZ0/XX– 2 –
2. [Maximum mark: 6]
The following diagram shows part of a circle with centre O and radius 4 cm .
O
B
A
θ
4 cm
5 cm
Chord AB has a length of 5 cm and AÔB = θ .
(a) Find the value of θ , giving your answer in radians. [3]
(b) Find the area of the shaded region. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP03
Turn over
SPEC/5/MATAA/SP2/ENG/TZ0/XX– 3 –
3. [Maximum mark: 6]
On 1st January 2020, Laurie invests $P in an account that pays a nominal annual interest
rate of 5.5 % , compounded quarterly.
The amount of money in Laurie’s account at the end of each year follows a geometric
sequence with common ratio, r .
(a) Find the value of r , giving your answer to four signicant gures. [3]
Laurie makes no further deposits to or withdrawals from the account.
(b) Find the year in which the amount of money in Laurie’s account will become double the
amount she invested. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP04
SPEC/5/MATAA/SP2/ENG/TZ0/XX– 4 –
4. [Maximum mark: 6]
A six-sided biased die is weighted in such a way that the probability of obtaining a “six” is
7
10
.
The die is tossed ve times. Find the probability of obtaining
(a) at most three “sixes”. [3]
(b) the third “six” on the fth toss. [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP05
Turn over
SPEC/5/MATAA/SP2/ENG/TZ0/XX– 5 –
5. [Maximum mark: 5]
The following table below shows the marks scored by seven students on two dierent
mathematics tests.
Test 1 (x)
15 23 25 30 34 34 40
Test 2 ( y)
20 26 27 32 35 37 35
Let L
1
be the regression line of x on y . The equation of the line L
1
can be written in the
form x = ay + b .
(a) Find the value of a and the value of b . [2]
Let L
2
be the regression line of y on x . The lines L
1
and L
2
pass through the same point
with coordinates ( p , q) .
(b) Find the value of p and the value of q . [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP06
SPEC/5/MATAA/SP2/ENG/TZ0/XX– 6 –
6. [Maximum mark: 7]
The displacement, in centimetres, of a particle from an origin, O, at time t seconds, is given
by s (t) = t
2
cos t + 2t sin t , 0 t 5 .
(a) Find the maximum distance of the particle from O. [3]
(b) Find the acceleration of the particle at the instant it rst changes direction. [4]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12EP07
Turn over
SPEC/5/MATAA/SP2/ENG/TZ0/XX– 7 –
Do not write solutions on this page.
Section B
Answer all questions in the answer booklet provided. Please start each question on a new page.
7. [Maximum mark: 16]
Adam sets out for a hike from his camp at point A . He hikes at an average speed of 4.2 km/h
for 45 minutes, on a bearing of 035
from the camp, until he stops for a break at point B .
(a) Find the distance from point A to point B . [2]
35
A
B
N
Adam leaves point B on a bearing of 114
and continues to hike for a distance of 4.6 km until
he reaches point C .
35
A
B
C
N
N
(b) (i) Show that AB
̂
C is 101
.
(ii) Find the distance from the camp to point C . [5]
(c) Find BA . [3]
Adam’s friend Jacob wants to hike directly from the camp to meet Adam at point C .
(d) Find the bearing that Jacob must take to point C . [3]
Jacob hikes at an average speed of 3.9 km/h.
(e) Find, to the nearest minute, the time it takes for Jacob to reach point C . [3]
12EP08
SPEC/5/MATAA/SP2/ENG/TZ0/XX– 8 –
Do not write solutions on this page.
8. [Maximum mark: 15]
The length, X mm , of a certain species of seashell is normally distributed with mean 25 and
variance, σ
2
.
The probability that X is less than 24.15 is 0.1446 .
(a) Find P (24.15 < X < 25) . [2]
(b) (i) Find σ , the standard deviation of X .
(ii) Hence, nd the probability that a seashell selected at random has a length
greater than 26 mm . [5]
A random sample of 10 seashells is collected on a beach. Let Y represent the number of
seashells with lengths greater than 26 mm .
(c) Find E (Y ) . [3]
(d) Find the probability that exactly three of these seashells have a length greater
than 26 mm . [2]
A seashell selected at random has a length less than 26 mm .
(e) Find the probability that its length is between 24.15 mm and 25 mm . [3]
12EP09
Turn over
SPEC/5/MATAA/SP2/ENG/TZ0/XX– 9 –
Do not write solutions on this page.
9. [Maximum mark: 13]
Consider a function f , such that
fx xb
xb
() .sin ()
,,
= +
+≤
≤∈
58
6
1010
.
(a) Find the period of f . [2]
The function f has a local maximum at the point (2 , 21.8) , and a local minimum at (8 , 10.2) .
(b) (i) Find the value of b .
(ii) Hence, nd the value of f (6) . [4]
A second function g is given by
gx qx pq() sin( .)
,;
,=
+≤
≤∈
2
9
375010
px
.
The function g passes through the points (3 , 2.5) and (6 , 15.1) .
(c) Find the value of p and the value of q . [5]
(d) Find the value of x for which the functions have the greatest dierence. [2]
12EP10
SPEC/5/MATAA/SP2/ENG/TZ0/XX– 10 –
12EP11
Please do not write on this page.
Answers written on this page
will not be marked.
12EP12
Please do not write on this page.
Answers written on this page
will not be marked.
SPEC/5/MATAA/SP2/ENG/TZ0/XX/M
10 pages
Markscheme
Specimen paper
Mathematics:
analysis and approaches
Standard level
Paper 2
– 2 – SPEC/5/MATAA/SP2/ENG/TZ0/XX/M
Instructions to Examiners
Abbreviations
M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
Using the markscheme
1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.
2 Method and Answer/Accuracy marks
Do not automatically award full marks for a correct answer; all working must be checked, and
marks awarded according to the markscheme.
It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding
M mark(s), if any.
Where M and A marks are noted on the same line, e.g. M1A1, this usually means M1 for an
attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the
correct values.
Where there are two or more A marks on the same line, they may be awarded independently;
so if the first value is incorrect, but the next two are correct, award A0A1A1.
Where the markscheme specifies M2, A2
, etc., do not split the marks, unless there is a note.
Once a correct answer to a question or part-question is seen, ignore further correct working.
However, if further working indicates a lack of mathematical understanding do not award the final
A1. An exception to this may be in numerical answers, where a correct exact value is followed by
an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part,
and correct working shown, award FT marks as appropriate but do not award the final A1 in that
part.
Examples
Correct answer seen Further working seen Action
1.
82
5.65685...
(incorrect decimal value)
Award the final A1
(ignore the further working)
2.
1
sin 4
4
x
sin
x
Do not award the final A1
3.
log logab
log ( )ab
Do not award the final A1
– 3 – SPEC/5/MATAA/SP2/ENG/TZ0/XX/M
3 Implied marks
Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if
implied in subsequent working.
Normally the correct work is seen or implied in the next line.
Marks without brackets can only be awarded for work that is seen.
4 Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is
used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be
working present and not just a final answer based on an incorrect answer to a previous part.
However, if the only marks awarded in a subpart are for the answer (i.e. there is no working
expected), then FT marks should be awarded if appropriate.
Within a question part, once an error is made, no further A marks can be awarded for work
which uses the error, but M marks may be awarded if appropriate.
If the question becomes much simpler because of an error then use discretion to award fewer
FT marks.
If the error leads to an inappropriate value (e.g. probability greater than 1, use of
1r for the
sum of an infinite GP,
sin 1.5
, non integer value where integer required), do not award the
mark(s) for the final answer(s).
The markscheme may use the word “their” in a description, to indicate that candidates may be
using an incorrect value.
Exceptions to this rule will be explicitly noted on the markscheme.
If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s),
award marks as appropriate, unless the question says hence. It is often possible to use a
different approach in subsequent parts that does not depend on the answer to previous parts.
5 Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR
penalty of 1 mark to that question
If the question becomes much simpler because of the MR, then use discretion to award
fewer marks.
If the MR leads to an inappropriate value (e.g. probability greater than
1,
sin 1.5
, non-integer
value where integer required), do not award the mark(s) for the final answer(s).
Miscopying of candidates’ own work does not constitute a misread, it is an error.
The MR penalty can only be applied when work is seen. For calculator questions with no
working and incorrect answers, examiners should not infer that values were read incorrectly.
– 4 – SPEC/5/MATAA/SP2/ENG/TZ0/XX/M
6 Alternative methods
Alternative methods for complete questions are indicated by METHOD 1,
METHOD 2, etc.
Alternative solutions for part-questions are indicated by EITHER . . . OR.
7 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.
As this is an international examination, accept all alternative forms of notation.
In the markscheme, equivalent numerical and algebraic forms will generally be written in
brackets immediately following the answer.
In the markscheme, simplified answers, (which candidates often do not write in examinations),
will generally appear in brackets. Marks should be awarded for either the form preceding the
bracket or the form in brackets (if it is seen).
8 Accuracy of Answers
If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the
required accuracy. There are two types of accuracy errors, and the final answer mark should not be
awarded if these errors occur.
Rounding errors: only applies to final answers not to intermediate steps.
Level of accuracy: when this is not specified in the question the general rule applies to final
answers: unless otherwise stated in the question all numerical answers must be given exactly or
correct to three significant figures.
9 Calculators
A GDC is required for paper 2, but calculators with symbolic manipulation features/ CAS functionality
are not allowed.
Calculator notation
The subject guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of
calculator notation in the working.
Candidates will sometimes use methods other than those in the markscheme. Unless the question
specifies a method, other correct methods should be marked in line with the markscheme
– 5 – SPEC/5/MATAA/SP2/ENG/TZ0/XX/M
Section A
1. (a)

3
4
π 12.7
3
(or equivalent) A1
8580.24 (A1)
V
8.58 10
3
A1
[3 marks]
(b) recognising volume of the cone is same as volume of their sphere (M1)

2
1
π 14.8 8580.24
3
r
(or equivalent) A1
r
23.529
24r
(cm) correct to 2 significant figures A1
[3 marks]
Total [6 marks]
2. (a) METHOD 1
attempt to use the cosine rule (M1)
222
445
cos
244


(or equivalent) A1
1.35
A1
[3 marks]
METHOD 2
attempt to split triangle
AOB into two congruent right triangles (M1)
2.5
sin
24



A1
1.35
A1
[3 marks]
(b) attempt to find the area of the shaded region (M1)
1
44(2
2

A1
39.5
(cm
2
) A1
[3 marks]
Total [6 marks]
3. (a)
4
5.5
1
4100



(M1)(A1)
1.056
A1
[3 marks]
continued…
– 6 – SPEC/5/MATAA/SP2/ENG/TZ0/XX/M
Question 3 continued
(b) EITHER
4
5.5
21
100 4
n
PP




OR

2their()
m
PP a
(M1)(A1)
Note: Award (M1) for substitution into loan payment formula. Award (A1) for correct substitution.
OR
PV 1
FV 2
I% 5.5
P/Y 4
C/Y
4
50.756n 
(M1)(A1)
OR
PV 1
FV 2
I% 100 (their ( ) 1)a
P/Y
1
C/Y
1 (M1)(A1)
THEN
12.7 years
Laurie will have double the amount she invested during
2032 A1
[3 marks]
Total [6 marks]
4. (a) recognition of binomial (M1)
~B(5,0.7)X
attempt to find
P( 3)X
M1
0.472( 0.47178)
A1
[3 marks]
(b) recognition of
2 sixes in 4 tosses (M1)

22
4
P 3rd six on the 5th toss 0.7 0.3 0.7( 0.2646 0.7)
2







A1

0.185 0.18522 A1
[3 marks]
Total [6 marks]
– 7 – SPEC/5/MATAA/SP2/ENG/TZ0/XX/M
5. (a)
1.29a
and
10.4b 
A1A1
[2 marks]
(b) recognising both lines pass through the mean point (M1)
28.7, 30.3pq
A2
[3 marks]
Total [5 marks]
6. (a) use of a graph to find the coordinates of the local minimum (M1)
16.513...s 
(A1)
maximum distance is
16.5 cm (to the left of O) A1
[3 marks]
(b) attempt to find time when particle changes direction eg considering the
first maximum on the graph of
s
or the first t – intercept on the graph of
.s
(M1)
1.51986...t
(A1)
attempt to find the gradient of
s
for their value of t,

1.51986...s

(M1)
8.92
(cm/s
2
) A1
[4 marks]
Total [7 marks]
– 8 – SPEC/5/MATAA/SP2/ENG/TZ0/XX/M
Section B
7. (a)
4.2
60
45
A1
AB 3.15
(km) A1
[2 marks]
(b) (i)
or
180 114

A1
35 66
A1
ˆ
ABC 101
AG
(ii) attempt to use cosine rule (M1)
222
4.6 cos 1AC 3.15 4.6 2 3.15 01
(or equivalent) A1
AC 6.05
(km) A1
[5 marks]
(c) valid approach to find angle
BCA
(M1)
eg sine rule
correct substitution into sine rule A1
eg
sin B
ˆ
CA

3.15
sin101
6.0507...
B
ˆ
CA 30.7
A1
[3 marks]
(d)
B
ˆ
AC 48.267
(seen anywhere) A1
valid approach to find correct bearing (M1)
eg
48.267 35
bearing
83.3
(accept
083
) A1
[3 marks]
(e) attempt to use time
distance
speed
M1
6.0507
3.9
or
0.065768
km/min (A1)
t 93
(minutes) A1
[3 marks]
Total [16 marks]
– 9 – SPEC/5/MATAA/SP2/ENG/TZ0/XX/M
8. (a) attempt to use the symmetry of the normal curve (M1)
eg diagram,
0.5 0.1446

P 24.15 25 0.3554X A1
[2 marks]
(b) (i) use of inverse normal to find
z score (M1)
1.0598z 
correct substitution
24.15 25
1.0598

(A1)
0.802
A1
(ii)

P 26 0.106X  (M1)A1
[5 marks]
(c) recognizing binomial probability (M1)
E( ) 10 0.10621Y
(A1)
1.06
A1
[3 marks]
(d)
P3Y
(M1)
0.0655
A1
[2 marks]
(e) recognizing conditional probability (M1)
correct substitution A1
0.3554
1 0.10621
0.398
A1
[3 marks]
Total [15 marks]
9. (a) correct approach A1
eg
2
6
p
eriod

(or equivalent)
period 12
A1
[2 marks]
(b) (i) valid approach (M1)
eg
max + min
2
max amplitudeb 
21.8 10.2
2
, or equivalent
16b
A1
continued…
– 10 – SPEC/5/MATAA/SP2/ENG/TZ0/XX/M
Question 9 continued
(ii) attempt to substitute into their function (M1)

π
5.8sin 6 1 16
6




(6) 13.1f
A1
[4 marks]
(c) valid attempt to set up a system of equations (M1)
two correct equations A1

sin 3 3.75 2.5
9
pq




,

sin 6 3.75 15.1
9
pq




valid attempt to solve system (M1)
8.4; 6.7pq
A1A1
[5 marks]
(d) attempt to use
() ()
f
xgx to find maximum difference (M1)
1.64x
A1
[2 marks]
Total [13 marks]