KANAGAL, B., AHMED, A., PANDEY, S., JOSIFOVSKI, V., YU AN, J., AND GARCIA-PUEYO, L. 2012.
Supercharging recommender systems using taxonomies for learning user purchase behavior. Proceed-
ings of the VLDB Endowment 5, 10, 956–967.
KNOWLES, J. E. 2015. Of needles and haystacks: Building an accurate statew ide dropout early warning
system in wisconsin. JEDM-Journal of Educational Data Mining 7, 3, 18–67.
KOREN, Y. , BELL, R., VOLINSKY, C., ET AL. 2009. Matrix factorization techniques for recommender
systems. Computer 42, 8, 30–37.
MACDONALD, I. 1992. Meeting the needs of non-traditional students: Challenge or opportunity for
higher education. Scottish Journal of Adult E ducation 1, 2, 34–46.
MEIER, Y., XU, J., ATAN, O., AND VAN DER SCHAAR, M. 2016. Predicting grades. IEEE Transactions
on Signal Processing 64, 4, 959–972.
PEL
´
ANEK, R. AND JARU
ˇ
SEK, P. 2015. Student modeling based on problem solving times. International
Journal of Artificial Intelligence in Education 25, 4, 493–519.
SAARELA, M. AND K
¨
ARKK
¨
AINEN, T. 2015. A nalysing student performance using sparse data of core
bachelor courses. JEDM-Journal of Educational Data Mining 7, 1, 3–32.
SALAKHUTDINOV, R., MNIH, A., AND HINT ON, G. 2007. Restricted boltzmann machines for collab-
orative filtering. In Proceedings of the 24th international conference on Machine learning. ACM,
791–798.
SARWAR, B. M., KONSTAN, J. A., BORCHERS, A., HERLOCKER, J., MILLER, B., AND RIEDL, J.
1998. Using filtering agents to improve prediction quality in the grouplens research collaborative
filtering system. In Proceedings of the 1998 ACM conference on Computer supported cooperative
work. ACM, 345–354.
SWEENEY, M., LESTER, J., AND RANGWALA, H. 2015. Next-term student grade prediction. In Big
Data (Big Data), 2015 IEEE International Conference on. IEEE, 970–975.
SWEENEY, M., RANGWALA, H., LESTER, J., AND JOHRI, A. 2016. Next-term student performance
prediction: A recommender systems approach. arXiv preprint arXiv:1604.01840.
THAI-NGHE, N., DRUMOND, L., HORV
´
ATH, T., KROHN-GRIMBERGHE, A., NANOPOULOS, A., AND
SCHMIDT-THIEME, L. 2011. Factorization techniques for predicting student performance. Educa-
tional Recommender Systems and Technologies: Practices and Challenges, 129–153.
THAI-NGHE, N., DRUMOND, L., HORV
´
ATH, T., NANOPOULOS, A., AND SCHMIDT-THIEME, L. 2011.
Matrix and tensor factorization for predicting student performance. In CSEDU (1). Citeseer, 69–78.
THAI-NGHE, N., DRUMOND, L., HORV
´
ATH, T., SCHMIDT-THIEME, L., ET AL. 2011. Multi-relational
factorization models for predicting student performance. In Proc. of the KDD Workshop on Knowl-
edge Discovery in Educational Data. Citeseer, 27–40.
TOSCHER, A. AND JAHRER, M. 2010. Collaborative filtering applied to educational data mining. KDD
cup.
VAN DE SANDE, B. 2013. Properties of the bayesian know ledge tracing model. JEDM-Journal of Edu-
cational Data Mining 5, 2, 1–10.
WANG, Y.-H. AND LIAO, H.-C. 2011. Data mining for adaptive learning in a tesl-based e-learning
system. Expert Systems with Applications 38, 6, 6480–6485.
XU, J., MOON, K. H., AND VAN DER SCHAAR, M. 2017. A machine learning approach for tracking
and predicting student performance in degree programs. IEEE Journal of Selected Topics in Signal
Processing.
21