|
1493
RIVERA- RIOS Et Al.
19. Milstone LM. Epidermal desquamation. J Dermatol S ci. 20 04;36 (3):131-
140. https://doi.org/10.1016/j.jderm sci.2004.05.004
20. Zaatari M, Siegel J. Particle characterization in retail environments:
Concentrations, sources, and removal mechanisms. Indoor Air.
2014;24(4):350- 361. https://doi.org/10.1111/ina.12088
21. Bennett D, Apte M, (May) Wu X, Trout A, Faulkner D, Maddalena R,
Sullivan D. Indoor environmental quality and heating, ventilating,
and air conditioning survey of small and medium size commercial
buildings: Field Study. 2011.California Energy Commission pre-
pared by UC- Davis and the Lawrence Berkley National Lab.
22. Lee SC, Lam S, Kin FH. Characterization of VOCs, ozone, and PM10
emissions from office equipment in an environmental chamber.
Build Environ. 2001;36(7):837- 842. https://doi.org/10.1016/S0360
- 1323(01)00009 - 9
23. Fadeyi MO, Weschler CJ, Tham KW. The impact of recirculation,
ventilation and filters on secondary organic aerosols generated
by indoor chemistry. Atmos Environ. 2009;43(22– 23):3538- 3547.
https://doi.org/10.1016/j.atmos env.2009.04.017
24. Serfozo N, Chatoutsidou SE, Lazaridis M. The effect of par-
ticle resuspension during walking activity to PM10 mass and
number concentrations in an indoor microenvironment. Build
Environ. 2014;82:180- 189. https://doi.org/10.1016/j.build
env.2014.08.017
25. Qian J, Ferro AR. Resuspension of dust particles in a chamber and as-
sociated environmental factors. Aerosol Sci Technol. 2008;42(7):566-
578. https://doi.org/10.1080/02786 82080 2220274
26. Tellier R, Li Y, Cowling BJ, Tang JW. Recognition of aerosol trans-
mission of infectious agents: a commentary. BMC Infect Dis.
2019;19(1):101. https://doi.org/10.1186/s1287 9- 019- 3707- y
27. Anderson EL, Turnham P, Griffin JR, Clarke CC. Consideration of
the aerosol transmission for COVID- 19 and public health. Risk Anal.
2020;40(5):902- 907. https://doi.org/10.1111/risa.13500
28. Prather KA, Wang CC, Schooley RT. Reducing transmission of
SARS- CoV- 2. Science (80- ). 2020;368(6498):1422- 1424. https://doi.
org/10.1126/scien ce.abc6197
29. Lednicky JA, Lauzardo M, Fan ZH, et al. Viable SARS- CoV- 2 in
the air of a hospital room with COVID- 19 patients. International
Journal of Infectious Diseases. 2020;100:476– 482. http://dx.doi.
org/10.1016/j.ijid.2020.09.025
30. Morawska L, Cao J. Airborne transmission of SARS- CoV- 2: The
world should face the reality. Environ Int. 2020;139:105730. https://
doi.org/10.1016/j.envint.2020.105730
31. Morawska L, Milton DK. It is time to address airborne transmis-
sion of coronavirus disease 2019 (COVID- 19). Clin Infect Dis.
2020;71(9):2311– 2313. https://doi.org/10.1093/cid/ciaa939
32. Alsved M, Matamis A, Bohlin R, et al. Exhaled respiratory particles
during singing and talking. Aerosol Sci Technol. 2020;54(11):1245-
1248. https://doi.org/10.1080/02786 826.2020.1812502
33. Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart
WD. Aerosol emission and superemission during human speech
increase with voice loudness. Sci Rep. 2019;9(1):2348. https://doi.
org/10.1038/s4159 8- 019- 38808 - z
34. Morawska L, Johnson GR, Ristovski ZD, et al. Size distribution and
sites of origin of droplets expelled from the human respiratory
tract during expiratory activities. J Aerosol Sci. 2009;40(3):256- 269.
https://doi.org/10.1016/j.jaero sci.2008.11.002
35. Johnson GR, Morawska L, Ristovski ZD, et al. Modality of human
expired aerosol size distributions. J Aerosol Sci. 2011;42(12):839-
851. https://doi.org/10.1016/j.jaero sci.2011.07.009
36. Seinfeld JH, Pandis SN. Atmospheric Chemistry and Physics: From Air
Pollution to Climate Change, 3rd edn. 2016.
37. Prather KA, Marr LC, Schooley RT, McDiarmid MA, Wilson ME,
Milton DK. Airborne transmission of SARS- CoV- 2. Science (80- ).
2020:eabf0521. 370(6514):303– 304. https://doi.org/10.1126/
scien ce.abf0521
38. Marr LC, Tang JW, Van Mullekom J, Lakdawala SS. Mechanistic
insights into the effect of humidity on airborne influenza
virus survival, transmission and incidence. J R Soc Interface.
2019;16(150):20180298. https://doi.org/10.1098/rsif.2018.0298
39. Qian GQ, Yang NB, Ding F, et al. Epidemiologic and clinical
characteristics of 91 hospitalized patients with COVID- 19 in
Zhejiang, China: a retrospective, multi- centre case series. QJM.
2020;113(7):474- 481. https://doi.org/10.1093/qjmed/ hcaa089
40. Olsen SJ, Chang HL, Cheung TYY, et al. Transmission of the se-
vere acute respiratory syndrome on aircraft. N Engl J Med.
2003;349(25):2416- 2422. https://doi.org/10.1056/NEJMo a031349
41. Baker MG, Thornley CN, Mills C, et al. Transmission of pandemic A/
H1N1 2009 influenza on passenger aircraft: retrospective cohort
study. BMJ. 2010;340:c2424. https://doi.org/10.1136/bmj.c2424
42. Mangili A, Gendreau MA. Transmission of infectious diseases
during commercial air travel. Lancet. 2005;365(9463):989- 996.
https://doi.org/10.1016/S0140 - 6736(05)71089 - 8
43. Choi EM, Chu DKW, Cheng PKC, et al. In- flight transmission of se-
vere acute respiratory syndrome Coronavirus 2. Emerg Infect Dis.
2020;26(11): https://doi.org/10.3201/eid26 11.203254
44. Khanh NC, Thai PQ, Quach H- L, et al. Transmission of severe
acute respiratory syndrome coronavirus 2 during long flight. Emerg
Infect Dis. 2020;26(11):2617– 2624. https://doi.org/10.3201/eid26
11.203299
45. Hocking M. Passenger aircraft cabin air quality: trends, effects, so-
cietal costs, proposals. Chemosphere. 2000;41(4):603- 615. https://
doi.org/10.1016/S0045 - 6535(99)00537 - 8
46. Lee SC. Indoor air quality investigation on commercial air-
craft. Indoor Air. 1999;9(3):180- 187. https://doi.org/10.1111/
j.1600- 0668.1999.t01- 1- 00004.x
47. Guan J, Jia Y, Wei Z, Tian X. Temporal variations of ultrafine
particle concentrations in aircraft cabin: A field study. Build
Environ. 2019;153:118- 127. https://doi.org/10.1016/j.build
env.2019.02.025
48. Li Z, Guan J, Yang X, Lin CH. Source apportionment of airborne
particles in commercial aircraft cabin environment: Contributions
from outside and inside of cabin. Atmos Environ. 2014;89:119- 128.
https://doi.org/10.1016/j.atmos env.2014.01.042
49. Ji W, Zhao B. Estimation of the contribution of secondary organic
aerosol to PM2.0 concentration in aircraft cabins. Build Environ.
2014;82:267- 273. https://doi.org/10.1016/j.build env.2014.08.025
50. Lee S- C, Lam S, Luk F. Investigation of cabin air quality in commer-
cial aircrafts. Proc Heal Build. 2000;1:471- 475.
51. Cao Q, Xu Q, Liu W, et al. In- flight monitoring of particle deposi-
tion in the environmental control systems of commercial airliners in
China. Atmos Environ. 2017;154:118- 128. https://doi.org/10.1016/j.
atmos env.2017.01.044
52. Zhu Y, Yu N, Kuhn T, Hinds WC. Field comparison of P- Trak and con-
densation particle counters. Aerosol Sci Technol. 2006;40(6):422-
430. https://doi.org/10.1080/02786 82060 0643321
53. Hafsat M, Walton C, Maigari AK, Mohammed HA, Galadima US.
Assessment of ultrafine particles on aircraft cabin at different
phases of flight. Int J Adv Acad Res Sci. 2019;5(5):2488- 9849.
54. Long CM, Suh HH, Koutrakis P. Characterization of indoor particle
sources using continuous mass and size monitors. J Air Waste Manag
Assoc. 2000;50(7):1236- 1250. https://doi.org/10.1080/10473
289.2000.10464154
55. Abdullahi KL, Delgado- Saborit JM, Harrison RM. Emissions and in-
door concentrations of particulate matter and its specific chemical
components from cooking: A review. Atmos Environ. 2013;71:260-
294. https://doi.org/10.1016/j.atmos env.2013.01.061
56. He C, Morawska L, Hitchins J, Gilbert D. Contribution from indoor
sources to particle number and mass concentrations in residen-
tial houses. Atmos Environ. 2004;38(21):3405- 3415. https://doi.
org/10.1016/j.atmos env.2004.03.027